Vol. 49
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-02-14
Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images Using Improved PSO for Extreme Learning Machine
By
Progress In Electromagnetics Research B, Vol. 49, 31-54, 2013
Abstract
Magnetic Resonance Imaging (MRI) technique is one of the most useful diagnostic tools for human soft tissue analysis. Moreover, the brain anatomy features and internal tissue architecture of brain tumor are a complex task in case of 3-D anatomy. The additional spatial relationship in transverse, longitudinal planes and the coronal plane information has been proved to be helpful for clinical applications. This study extends the computation of gray level co-occurrence matrix (GLCM) and Run length matrix (RLM) to a three-dimensional form for feature extraction. The sub-selection of rich optimal bank of features to model a classifier is achieved with custom Genetic Algorithm design. An improved Extreme Learning Machine (ELM) classifier algorithm is explored, for training single hidden layer artificial neural network, integrating an enhanced swarm-based method in optimization of the best parameters (input-weights, bias, norm and hidden neurons), enhancing generalization and conditioning of the algorithm. The method is modeled for automatic brain tissue and pathological tumor classification and segmentation of 3D MRI tumor images. The method proposed demonstrates good generalization capability from the best individuals obtained in the learning phase to handle sparse image data on publically available benchmark dataset and real time data sets.
Citation
Baladhandapani Arunadevi, and Subramaniam Deepa, "Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images Using Improved PSO for Extreme Learning Machine," Progress In Electromagnetics Research B, Vol. 49, 31-54, 2013.
doi:10.2528/PIERB13010202
References

1. Materka, A. and M. Strzelecki, "Texture analysis methods --- A review,", Technical University of Lodz, Institute of Electronics, COST B11 Report, Brussels, 1998.

2. Byun, H. and S. Lee, "Applications of support vector machines for pattern recognition: A survey," Proc. Int. Work. Pattern Recognition with Support Vector Machines, 213-236, Canada, 2003.
doi:10.1109/18.661502

3. Barlett, P. L., "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inform. Theory, Vol. 44, 525-536, 1998.
doi:10.1016/0167-8655(90)90112-F

4. Chu, A., C. M. Sehgal, and J. F. Greenleaf, "Use of gray value distribution of run lengths for texture analysis," Pattern Recognition Letters, Vol. 11, No. 6, 415-420, 1990.
doi:10.1109/4235.985692

5. Clerc, M. and J. Kennedy, "The particle swarm --- Explosion stability, and convergence in a multidimensional complex space," IEEE Trans. on Evolutionary Computation, Vol. 6, No. 1, 58-73, 2002.
doi:10.1016/S1361-8415(03)00037-9

6. Cocosco, C. A., A. P. Zijdenbos, and A. C. Evans, "A fully automatic and robust brain MRI tissue classification method," Medical Image Analysis, Vol. 7, No. 4, 513-527, 2003.
doi:10.1016/j.crad.2004.07.008

7. Castellano, G., L. Bonilha, L. M. Li, and F. Cendes, "Texture analysis of medical images," Clinical Radiology, Vol. 59, No. 12, 1061-1069, 2004.

8. Cobzas, D., N. Birkbeck, M. Schmidt, and M. Jagersan, "3D variational brain tumor segmentation using a high dimensional feature set," Proc. Int. Conf. Computer Vision, 1-8, 2007.

9. Deepa, S. N. and D. B. Aruna, "Second order sequential minimal optimization for brain tumour classification," European Journal of Scientific Research, Vol. 64, No. 3, 377-386, 2011.
doi:10.1117/12.812470

10. Padfield, D. and J. Ross, "Validation tools for image segmentation," Proc. of SPIE, Medical Imaging, 72594W, 2009.

11. Dalai, N., B. Triggs, I. Rhone-Alps, and F. Montbonnot, "Histograms of oriented gradients for human detection," Proc. Conference on Computer Vision and Pattern Recognition, 886-893, 2005.

12. Xu, D.-H., A. S. Kurani, J. D. Furst, and D. S. Raicu, "Run length encoding for volumetric texture," Proc. of Visualization, Imaging, and Image Processing, 2004.
doi:10.1002/mrm.22147

13. Zacharaki, E. I., S. Wang, S. Chawla, D. S. Yoo, R. Wolf, E. R. Melhem, C. Davatzikos, "Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme," Magn. Reson. Med., Vol. 62, No. 6, 1609-1618, 2009.

14. Han, F., H.-F. Yao, and Q.-H. Ling, "An improved extreme learning machine based on particle swarm optimization," Proc. of International Conference on Intelligent Computing, 699-704, 2012.
doi:10.1006/nimg.2002.1202

15. Good, C. D., R. I. Scahill, and N. T. Fox, "Automatic differentiation of anatomical patterns in the human brain: Validation with studies of degenerative dementias," Neuroimage, Vol. 17, No. 1, 29-46, 2002.
doi:10.1016/S0146-664X(75)80008-6

16. Galloway, M. M., "Texture analysis using grey level run lengths," Comp. Graph. and Image Proc., Vol. 4, 172-179, 1975.

17. Georgiadis, P., D. Cavouras, I. Kalatzis, D. Glotsos, K. Sifaki, M. Malamas, G. Nikiforidis, and E. Solomou, "Computer aided discrimination between primary and secondary brain tumors on MRI: From 2D to 3D texture analysis," E-Journal of Science & Technology (E-JST), 9-18, 2008.

18. Hu, X., K. K. Tan, and D. N. Levin, "Three-dimensional magnetic resonance images of the brain: Application to neurosurgical planning," J. Neurosurg., Vol. 72, 433-440, 1990.
doi:10.1016/j.neucom.2005.12.126

19. Huang, G. B., Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, Vol. 70, No. 1, 489-501, 2006.

20. Huang, G. B., Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: A new learning scheme of feed forward neural networks," Proc. Int. Conf. Neural Networks, 985-990, Budapest, Hungary, 2004.
doi:10.1109/TNN.2003.809401

21. Huang, G. B., "Learning capability and storage capacity of two-hidden-layer feed forward networks," IEEE Transactions on Neural Networks, Vol. 14, No. 2, 274-281, 2004.

22. Huang, G. B. and H. Babri, "General approximation theorem on feed forward networks," Proc. International Conference on Information, Communications and Signal Processing, 698-702, Singapore, 1997.
doi:10.1109/TSMC.1973.4309314

23. Haralick, R. M., K. Shanmugam, and I. Dinstein, "Textural features for image classification," IEEE Trans. Syst. Man Cybern., Vol. 3, 610-621, 1973.

24. Guyon, I. and A. Elisseeff, "An introduction to variable and feature selection," Journal of Machine Learning Research, Vol. 3, 1157-1182, 2003.
doi:10.1007/s11682-011-9142-3

25. Zhang, J., C. Yu, G. Jiang, W. Liu, and L. Tong, "3D texture analysis on MRI images of Alzheimer's disease," Brain Imaging and Behavior, Vol. 6, 61-69, 2012.

26. Kurani, A. S., D. H. Xu, J. D. Furst, and D. S. Raicu, "Co-occurence matrices for volumetric data," Proc. 7th IASTED International Conf. on Computer Graphics and Imaging, 2004.

27. Khalid, K. M. and I. Nystrom, "A modified particle swarm optimization applied in image registration," Proc. Int. Conf. Pattern Recognition, 2302-2305, 2010.

28. Krohling, R. A. and E. Mendel, "Bare bones particle swarm optimization with Gaussian or Cauchy jumps," Proc. of Congress on Evolutionary Computation, 3285-3291, 2009.
doi:10.1109/42.811270

29. Leemput, K. V., F. Maes, D. Vandermeulen, and P. Suetens, "Automated model-based tissue classification of MR images of the brain," IEEE Trans. Med. Imag., Vol. 18, No. 10, 897-908, 1999.
doi:10.1023/B:VISI.0000029664.99615.94

30. Lowe, D. G., "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, Vol. 60, 91-110, 2004.

31. Kaus, M. R., S. K. Warfield, A. Nabavi, M. Peter, A. Ferenc, and R. Kikinis, "Automated segmentation of MR images of brain tumors," Radiology, Vol. 218, 586-591, 2001.
doi:10.1016/0031-3203(95)00067-4

32. Ojala, T., M. Pietikinen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognition, Vol. 9, No. 1, 51-59, 1996.
doi:10.1007/s11721-007-0002-0

33. Poli, R., J. Kennedy, and T. Blackwell, "Particle swarm optimization: An overview," Swarm Intelligence, Vol. 1, 33-57, 2007.
doi:10.1109/34.761261

34. Randen, T. and J. H. Husoy, "Filtering for texture classification: A comparative study," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 4, 291-310, 1999.
doi:10.1016/j.engappai.2010.06.009

35. Suresh, S., S. Saraswathi, and N. Sundararajan, "Performance enhancement of extreme learning machine for multi-category sparse cancer classification problems," Engineering Applications of Artificial Intelligence, Vol. 23, 1149-1157, 2010.
doi:10.1109/TCBB.2010.13

36. Saraswathi, S., S. Suresh, N. Sundararajan, Z. Michael, and N. Marit, "Performance enhancement of extreme learning machine for multi-category sparse cancer classification problems," ACM Transactions on Computational Biology and Bioinformatics, Vol. 8, No. 2, 452-463, 2011.
doi:10.1016/j.asoc.2008.07.005

37. Suresh, S., V. Babu, and H. J. Kim, "No-reference image quality assessment using modified extreme learning machine classifier," Applied Soft Computing, Vol. 9, 541-552, 2009.
doi:10.1016/0167-8655(89)90037-8

38. Siedlecki, W. and J. Sklanky, "A note on genetic algorithms for large-scale feature selection," Pattern Recognition Letters, Vol. 10, No. 5, 335-347, 1989.

39. Xu, Y. and Y. Shu, "Evolutionary extreme learning machine --- Based on particle swarm optimization," Proc. Inter. Symp. Neural Networks, Vol. 3791, 644-652, 2006.
doi:10.1016/j.patcog.2005.03.028

40. Zhu, Q. Y., A. K. Qin, P. N. Suganthan, and G. B. Huang, "Evolutionary extreme learning machine," Pattern Recognition, Vol. 38, No. 10, 1759-1763, 2005.

41. Zhang, Y. and L.Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.