Vol. 29
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-07
Electromagnetic Wave Scattering from Cylindrical Structure with Mixed-Impedance Boundary Conditions
By
Progress In Electromagnetics Research M, Vol. 29, 207-222, 2013
Abstract
Recently, a new boundary condition is introduced in which surface shows different impedances for TE and TM electromagnetic fields. This new boundary condition is called mixed-impedance (MI) boundary condition and can be expressed in terms of normal components of electromagnetic fields. In this paper, the cylindrical structures with MI boundary condition were investigated and the scattering of such structures was obtained for both normal and oblique incidence and both TEZ and TMZ polarizations. The interesting feature of MI boundary condition was that the boundary conditions of PEC, PMC, DB, D'B', and isotropic impedance boundaries were special cases of the MI boundary. Therefore, by calculating the electromagnetic scattering from a MI boundary, scattering from various boundary conditions could be easily obtained. It was also demonstrated that, by proper choice of boundary conditions the forward or backward RCS (radar cross section) could be significantly increased or decreased.
Citation
Mostafa Mashhadi, Ali Abdolali, and Nader Komjani, "Electromagnetic Wave Scattering from Cylindrical Structure with Mixed-Impedance Boundary Conditions," Progress In Electromagnetics Research M, Vol. 29, 207-222, 2013.
doi:10.2528/PIERM12122809
References

1. Hoppe, D. J. and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Taylor & Francis, 1995.

2. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

3. Kildal, P. S., "Artificially soft and hard surfaces in electromagnetic," IEEE Trans. on Antennas and Propag., Vol. 38, No. 10, 1537-1544, 1990.
doi:10.1109/8.59765

4. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Trans. on Antennas and Propag., Vol. 58, No. 4, 1128-1135, Apr. 2010.
doi:10.1109/TAP.2010.2041149

5. Lindell, I. V. and A. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. on Antennas and Propag., Vol. 57, No. 3, 694-700, Mar. 2009.
doi:10.1109/TAP.2009.2013431

6. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary condition and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, No. 2, 026604-7, 2009.

7. Lindell, I. V. and A. Sihvola, "Simple skewon medium realization of DB boundary conditions," Progress In Electromagnetics Research, Vol. 30, 29-39, 2012.

8. Zalu·ski, D., D. Muha, and S. Hrabar, "Numerical investigation and possible realization of metamaterial-based DB boundary surface," Proc. on ICECOM, Dubrovnik, Croatia, 251-253, 2010.

9. Lindell, I. V. and A. Sihvola, "Zero axial parameter (ZAP) sheet," Progress In Electromagnetics Research, Vol. 89, 213-224, 2009.
doi:10.2528/PIER08120307

10. Lindell, I. V., A. Sihvola, L. Bergamin, and A. Favaro, "Realization of the D'B' boundary condition," IEEE Antennas Wireless Propag. Lett., Vol. 10, 643-646, 2011.
doi:10.1109/LAWP.2011.2159698

11. Wallen, H., I. V. Lindell, and A. Sihvola, "Mixed-impedance boundary conditions," IEEE Trans. on Antennas and Propag., Vol. 59, No. 5, 1580-1586, May 2011.
doi:10.1109/TAP.2011.2123064

12. Lindell, I. V., A. Sihvola, P. Yla-Oijala, and H. Wallen, "Zero backscattering from self-dual objects of finite size," IEEE Trans. on Antennas and Propag., Vol. 57, No. 9, 2725-2731, Sep. 2009.
doi:10.1109/TAP.2009.2027180

13. Balanis, A., Advanced Engineering Electromagnetic, John Wiley & Sons, 1989.