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Abstract—Recently, a new boundary condition is introduced in which
surface shows different impedances for TE and TM electromagnetic
fields. This new boundary condition is called mixed-impedance
(MI) boundary condition and can be expressed in terms of normal
components of electromagnetic fields. In this paper, the cylindrical
structures with MI boundary condition were investigated and the
scattering of such structures was obtained for both normal and oblique
incidence and both TEZ and TMZ polarizations. The interesting
feature of MI boundary condition was that the boundary conditions
of PEC, PMC, DB, D’B’, and isotropic impedance boundaries were
special cases of the MI boundary. Therefore, by calculating the
electromagnetic scattering from a MI boundary, scattering from
various boundary conditions could be easily obtained. It was also
demonstrated that, by proper choice of boundary conditions the
forward or backward RCS (radar cross section) could be significantly
increased or decreased.

1. INTRODUCTION

Electromagnetic boundary conditions are normally defined in terms
of tangential components of electric and magnetic fields. These
conventional boundary conditions are listed as follows [1–3].

• Perfect electric conductor (PEC) n×E = 0

• Impedance boundary condition Et = ¯̄Zs · n×H
• Perfect magnetic conductor (PMC) n×H = 0
• Perfect electromagnetic conductor (PEMC) n× (H + ME) = 0
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• Soft and hard surface V ·E = 0, V ·H = 0 for V · n = 0.

where n is the unit normal vector to the boundary surface, t represents
the tangential field components, ¯̄Zs denotes the two-dimensional
surface-impedance dyadic, M denotes the admittance of the PEMC
boundary and V is a real unit vector tangential to the surface.

Recently, a new class of boundary conditions has been introduced
in which the boundary conditions are expressed in terms of normal
components of the vectors D and B. These boundary conditions are
named DB, D’B’, DB’ and D’B surfaces. The boundary conditions in
these surfaces are stated as follows [4].

• DB surface n ·D = 0 and n ·B = 0.
• D’B’ surface ∇ · (nn ·D) = 0 and ∇ · (nn ·B) = 0.
• DB’ surface n ·D = 0 and ∇ · (nn ·B) = 0.
• D’B surface ∇ · (nn ·D) = 0 and n ·B = 0.

In [4], it was demonstrated that, if a given field can be decomposed
to TE and TM polarizations with respect to the normal vector to the
surface, then, these normal boundary conditions can be replaced with
PEC or PMC surfaces for each of TE and TM polarizations. This
expression is shown as a summary in Table 1.

Table 1. Expressing normal boundary conditions in terms of PEC or
PMC surfaces according to the type of polarization.

TE TM
DB PEC PMC
D’B’ PMC PEC
DB’ PMC PMC
D’B PEC PEC

It can be seen that the DB’ surface acts similar to PMC for
both polarization; then DB’ boundary condition can be considered
corresponding to the PMC boundary. Similarly, D’B surface
corresponds to PEC boundary. DB and D’B’ boundaries show different
behaviors for TE and TM polarizations and can act similar to PEC or
PMC surfaces depending on the type of polarization. So far, different
methods have been introduced for the realizations of DB and D’B’
surfaces [5–10].

In [11], a new anisotropic impedance boundary condition
was introduced which was called mixed-impedance (MI) boundary
condition, in which a TE/TM decomposition of the field with respect
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to the unit normal vector to the boundary surface was assumed and
the boundary had two different surface impedances for TE and TM
polarized fields.

ETE = ZTEn×HTE (1)

HTM = − 1
ZTM

n×ETM (2)

where ZTE and ZTM are surface impedances of TE and TM polarized
fields, respectively. It was indicated that MI boundary can be
expressed as a combination of four normal components of electric and
magnetic fields as follows [11].

jkηn ·H− ZTE∇ · (nn ·H) = 0 (3)
jkZTMn ·E− η∇ · (nn ·E) = 0 (4)

The interesting property of MI boundary condition is that PEC, PMC,
DB and D’B’ surfaces are its specific cases. When ZTE = ZTM, MI
boundary is an isotropic impedance boundary that includes the specific
cases of PEC (ZTE = ZTM = 0) and PMC (ZTE = ZTM = ∞).
Also, for isotropic and homogenous media, ZTE = 0 and ZTM = ∞
corresponds to DB boundary and ZTE = ∞ and ZTM = 0 corresponds
to D’B’ surface.

The two surface impedances were also expressed in terms of two
other parameters of s, a [11].

ZTE = η(s + a), ZTM =
η

(s− a)
(5)

where s and a are called self-dual and anti-self-dual surface-impedance
parameters, respectively. The two parameters of s and a determine
whether boundary is a self-dual boundary or not. The concept of self-
dual is represented in [12]. [12] states that a medium and/or boundary
condition are called self-dual when they remain invariant in the duality
transformation. It is shown in [11] that when a = 0, MI boundary is
a self-dual boundary for all values of s. Then s and a are called the
self-dual and anti-self-dual surface-impedance parameters.

Until now, only scattering from a MI sphere has been studied [11]
and scattering from cylindrical structure with MI boundary has not
studied yet. Therefore, in this paper the scattering of cylindrical
structures with MI boundary are investigated. Using (3)–(5), boundary
conditions in cylindrical structures have the following form.

jkHρ − (s + a)
1
ρ

∂(ρHρ)
∂ρ

= 0 (6)

jkEρ − (s− a)
1
ρ

∂(ρEρ)
∂ρ

= 0 (7)
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where Hρ and Eρ are normal components of electric and magnetic fields
at the boundary surface.

In Section 2, scattering of a normally incident plane waves from
a MI boundary cylinder is investigated. Scattering of an obliquely
incident plane wave from a MI boundary cylinder is obtained in
Section 3 and the conclusions are given in Section 4.

2. SCATTERING OF A NORMALLY INCIDENT PLANE
WAVE FROM MI CYLINDER

We know that each plane wave can be expressed as the sum of two
plane waves with TM and TE polarizations. Then, by obtaining the
scattering fields of a cylinder for both polarizations, the scattering
fields of any plane wave can be calculated. So in this section, the
scattered fields from MI cylinder for both TMZ and TEZ polarizations
are computed.

2.1. Normally Incident Plane Wave: TMZ Polarization

Let us suppose that a TMZ plane wave is normally incident upon an
MI boundary cylinder of radius ρ0, as shown in Fig. 1. According
to cylindrical wave transformation, the incident electric field can be
expanded by an infinite sum of cylindrical wave functions [13]

Ei
Z = E0e

−jkx = E0

+∞∑
n=−∞

j−nJn(kρ)ejnϕ (8)

Figure 1. Uniform plane wave with normal incidence to MI cylinder.
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The scattered electric field from the cylinder can be considered as
follows:

Es
Z = E0

+∞∑
n=−∞

Anj−nH2
n(kρ)ejnϕ (9)

where H2
n(kρ) is the Hankel function of the second kind of order n,

and An represents the unknown coefficient and is determined from
the boundary conditions. Since the magnetic field along z-axis is zero
(Hz = 0), it can be shown using Maxwell’s equations that only the
components of EZ , Hρ and Hϕ have non-zero values and the other
field components are null.

The radial component of incident and scattered magnetic fields
are

H i
ρ =

−1
jωµρ

∂Ei
Z

∂ϕ
=
−E0

ωµρ

+∞∑
n=−∞

nj−nJn(kρ)ejnϕ (10)

Hs
ρ =

−1
jωµρ

∂Es
Z

∂ϕ
=
−E0

ωµρ

+∞∑
n=−∞

nAnj−nH2
n(kρ)ejnϕ (11)

The scattering amplitudes An are determined by (10) and (11) and
applying the boundary conditions (6).

An = − Jn(kρ0) + j(s + a)J ′n(kρ0)
H2

n(kρ0) + j(s + a)H ′2
n(kρ0)

, n 6= 0 (12)

Note that (12) is valid for n 6= 0. For n = 0 using (10) and (11);
therefore, boundary condition is itself satisfied and A0 must be
determined in another way. Indeed, for n = 0, incident and scattered
waves are TEMρ, whereas it was assumed that fields can be expressed
as a sum of partial fields TMρ and TEρ. The coefficient A0 must be
determined from additional information. This situation is similar to
the TEM wave incident normally to the planar boundary [4]. The
additional information is obtained from the way of realization of MI
boundary. If it is assumed that the MI cylinder acts like a dielectric
cylinder for TEMρ wave that have permittivity and permeability of εd

and µd, respectively, A0 can be obtained from the following equation.

A0 = −
J0(kρ0)− ηd

η0

J0(kdρ0)
J ′0(kdρ0)

J ′0(kρ0)

H2
0 (kρ0)− ηd

η0

J0(kdρ0)
J ′0(kdρ0)

H ′2
0(kρ0)

(13)

By comparing (12) and (13), it is observed that if the values of εd and
µd are chosen so that j(s+a) = −ηd

η0

J0(kdρ0)
J ′0(kdρ0)

, A0 can also be calculated
by (12).
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After calculating the coefficients An, RCS can be obtained similar
to [13]. Assuming that all the coefficients An are computed by (12),
then the normalized backward RCS (normalized scattering width for
ϕ = 180◦) and normalized forward RCS (normalized scattering width
for ϕ = 0◦) in terms of (s+a) are plotted in Fig. 2. It is observed that
normalized forward and backward RCS change in the ranges of 5–35
and 1–5, respectively. The maximum RCS in two directions occurs
approximately when s + a = −j. Normalized RCS in terms of ϕ for
different boundary conditions is plotted in Fig. 3.

Also, by comparing (12) with the coefficients obtained from an
impedance cylinder, it can be observed that by selecting Zs = η0(s+a),
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Figure 2. Normalized backward and forward RCS as a function of
Im(s + a). ρ0 = 0.6λ0, Re(s + a) = 0.02, is added to make the curves
smoother. (a) Normalized backward RCS. (b) Normalized forward
RCS.

0 45 90 135 180 225 270 315 360360
0

5

10

15

20

25

30

0

s+a=
s+a=0
s+a=-j

(deg)ϕ

σ
/λ

Figure 3. Normalized bistatic RCS as a function of ϕ for different
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the coefficients An in both cylinders will be equal (Zs is the surface
impedance of cylinder). In other words, in normal incidence to the
MI cylinder for TMZ polarization, MI cylinder acts like an impedance
cylinder with the surface impedance of η0(s+a) (it is assumed that the
A0 is calculated from (12)). If An are computed in special cases of DB
(s = 0, a = 0), D’B’ (s = ∞, a = 0), PEC (s = −a = ∞) and PMC
(s = a = ∞), it will be seen that the coefficients An for PEC and DB
are the same; also, An are equal for D’B’ and PMC. Since, for normal
incidence, TMZ polarization can be considered as TEρ polarization
(unless n = 0). The obtained results are predictable from Table 1.

2.2. Normally Incident Plane Wave: TEZ Polarization

Incident and scattered fields for TEZ polarization can be expressed as
follows.

H i
Z = H0e

−jkx = H0

+∞∑
n=−∞

j−nJn(kρ)ejnϕ (14)

Hs
Z = H0

+∞∑
n=−∞

Bnj−nH2
n(kρ)ejnϕ (15)

where Bn represents the unknown coefficient. It is shown that, in this
case, only the components of HZ , Eρ and Eϕ have non-zero values and
the other field components are null. Therefore, the magnetic field has
no radial component and the waves can be considered TMρ.

Ei
ρ =

1
jωερ

∂H i
z

∂ϕ
=

H0

ωερ

+∞∑
n=−∞

nj−nJn(kρ)ejnϕ (16)

Es
ρ =

1
jωερ

∂Hs
z

∂ϕ
=

H0

ωερ

+∞∑
n=−∞

nj−nBnH2
n(kρ)ejnϕ (17)

Now, the coefficients Bn are obtained by applying the boundary
condition (7).

Bn = − Jn(kρ0) + j(s− a)J ′n(kρ0)
H2

n(kρ0) + j(s− a)H ′2
n(kρ0)

, n 6= 0 (18)

Similar to Section 2.1, B0 must be determined using additional
information. By comparing the coefficients An and Bn, it is observed
that Bn can be obtained from An by replacing a with −a. If a = 0
is selected, then An and Bn will be equal. For this polarization, Bn

coefficients for DB and D’B’ are equal to PMC and PEC, respectively,
which are also expressed in Table 1.
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3. SCATTERING OF AN OBLIQUELY INCIDENT
PLANE WAVE FROM MI CYLINDER

Similar to Section 2, oblique incidence to MI cylinder is investigated
for two TEZ and TMZ polarizations.

3.1. Obliquely Incident Plane Wave: TMZ Polarization

Assuming that a TMZ plane wave traveling parallel to the x-z plane
is incident upon a cylinder of radius ρ0, which is shown in Fig. 4. The
incident electric field can be expressed as follows.

Ei = E0 (âx cos θi + âz sin θi) ejk0z cos θie−jk0x sin θi (19)

Using (19) the z-axis component of the electric field can be obtained
and expanded by an infinite sum of cylindrical wave functions in the
following form

Ei
z = E0 sin θie

jk0z cos θie−jk0x sin θi

= E0 sin θie
jk0z cos θi

n=+∞∑
n=−∞

j−nJn(k0ρ sin θi)ejnϕ (20)

By defining E′
0 = E0 sin θi, G = ejk0z cos θi , k0ρ = k0 sin θi, k0z =

k0 cos θi Ei
z (20) is simplified to

Ei
z = E′

0G
n=+∞∑
n=−∞

j−nJn(k0ρρ)ejnϕ (21)

Figure 4. Uniform plane wave with oblique incidence to MI cylinder.
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By using Maxwell equation, the radial components of electric and
magnetic fields are equal

Ei
ρ =

1
k2

ρ

∂2Ei
z

∂ρ∂z
=

jk0zE
′
0G

k0ρ

n=+∞∑
n=−∞

j−nJ ′n(k0ρρ)ejnϕ (22)

H i
ρ =

jωε

k2
ρ

∂Ei
z

ρ∂ϕ
=
−k0E

′
0G

η0k2
0ρ

n=+∞∑
n=−∞

nj−nJn(k0ρρ)ejnϕ (23)

In this case, because variations of electric field along z-axis are not
zero (∂E = ∂z 6= 0), both radial components of electric and magnetic
fields exist. So there are two equations (6) and (7) for boundary
conditions which must be satisfied. This means that there must be two
unknown coefficients which are determined from boundary conditions.
Therefore, cross-polarization fields are created in the scattered waves
to satisfy the MI boundary upon the cylinder.

Considering the special case of MI boundary when ZTE = ZTM (or
isotropic impedance boundary) is another way that prove the existence
of cross-polarization fields. As we know, in the oblique incidence to
impedance cylinder cross-polarization fields are created to satisfy the
impedance boundary condition. Therefore, the cross-polarization fields
must be also created in the general form of impedance boundary (or
MI boundary).

If the scattered fields in the Z direction are expressed as

Es
z = E′

0G

n=+∞∑
n=−∞

AnH2
n(k0ρρ)ejnϕ (24)

Hs
z =

E′
0G

η0

n=+∞∑
n=−∞

BnH2
n(k0ρρ)ejnϕ (25)

Then, the radial components of scattered electric and magnetic fields
will be:

Es
ρ =

−jωµ

k2
ρ

∂Hs
z

ρ∂ϕ
+

1
k2

ρ

∂2Es
z

∂ρ∂z
=

k0E
′
0G

k2
ρρ

n=+∞∑
n=−∞

nBnH2
n(k0ρρ)ejnϕ

+
jk0zE

′
0G

k0ρ

n=+∞∑
n=−∞

AnH ′2
n(k0ρρ)ejnϕ (26)

Hs
ρ =

jωε

k2
ρ

∂Es
z

ρ∂ϕ
+

1
k2

ρ

∂2Hs
z

∂ρ∂z
=
−k0E

′
0G

η0k2
0ρρ

n=+∞∑
n=−∞

nAnH2
n(k0ρρ)ejnϕ
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+
jk0zE

′
0G

k0ρη0

n=+∞∑
n=−∞

BnH ′2
n(k0ρρ)ejnϕ (27)

For this case, the boundary conditions (6) and (7) can be written as

jk
(
H i

ρ + Hs
ρ

)− (s + a)
1
ρ

∂
(
ρ

(
H i

ρ + Hs
ρ

))

∂ρ
= 0 (28)

jk
(
Ei

ρ + Es
ρ

)− (s− a)
1
ρ

∂
(
ρ

(
Ei

ρ + Es
ρ

))

∂ρ
= 0 (29)

By substituting (22), (26), (26) and (27) in (28) and (29), the unknown
coefficients An and Bn are obtained.

An =
C3C5 − C2C6

C1C5 − C2C4
, Bn = η0

C1C6 − C3C4

C1C5 − C2C4
(30)

where the coefficients C1 to C6 are defined as follows:

C1 =
jk0zk0ρ

k2
0

(
jk0H

′2
n(k0ρρ0)− (s− a)

ρ0

(
H ′2

n(k0ρρ0)

+ρ0k0ρH
′′2
n(k0ρρ0)

))
(31)

C2 =
nη0

k0ρ0

(
jk0H

2
n(k0ρρ0)− (s− a)k0ρH

′2
n(k0ρρ0)

)
(32)

C3 =
−jk0zk0ρ

k2
0

j−n

(
jk0J

′
n(k0ρρ0)− (s− a)

ρ0

(
J ′n(k0ρρ0)

+ρ0k0ρJ
′′
n(k0ρρ0)

))
(33)

C4 =
−n

k0η0ρ0

(
jk0H

2
n(k0ρρ0)− (s + a)k0ρH

′2
n(k0ρρ0)

)
(34)

C5 =
jk0zk0ρ

k2
0

(
jk0H

′2
n(k0ρρ0)− (s + a)

ρ0

(
H ′2

n(k0ρρ0)

+ρ0k0ρH
′′2
n(k0ρρ0)

))
(35)

C6 =
n

k0η0ρ0
j−n

(
jk0Jn(k0ρρ0)− (s + a)k0ρJ

′
n(k0ρρ0)

)
(36)

By obtaining An and Bn, the scattered far fields and then RCS can
be calculated. By doing some simplification, the RCS in terms of the
coefficients An and Bn are

RCS = lim
ρ→∞

(
2πρ

∣∣∣∣
Es

Ei

∣∣∣∣
2
)
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=
4

k0ρ




∣∣∣∣∣
n=+∞∑
n=−∞

Anjnejnϕ

∣∣∣∣∣

2

+

∣∣∣∣∣
n=+∞∑
n=−∞

Bnjnejnϕ

∣∣∣∣∣

2

 (37)

Also, the ratio of cross-polarization to co-polarization fields at far field
in terms of the coefficients An and Bn are

Rcross to co = lim
ρ→∞

∣∣∣∣
Es

cross

Es
co

∣∣∣∣ =

∣∣∣∣
n=+∞∑
n=−∞

Bnjnejnϕ

∣∣∣∣
∣∣∣∣
n=+∞∑
n=−∞

Anjnejnϕ

∣∣∣∣
(38)

3.2. Obliquely Incident Plane Wave: TEZ Polarization

Similar to Section 3.1, the scattered fields can be also calculated for
TEZ polarization. The incident and scattered fields are consider as

H i
z = H ′

0G
n=+∞∑
n=−∞

j−nJn(k0ρρ)ejnϕ (39)

Hs
z = H ′

0G
n=+∞∑
n=−∞

AnH2
n(k0ρρ)ejnϕ (40)

Es
z = −η0H

′
0G

n=+∞∑
n=−∞

BnH2
n(k0ρρ)ejnϕ (41)

By obtaining the radial components of electric and magnetic fields
and applying boundary conditions the coefficients An and Bn are
calculated.

An =
D3D5 −D2D6

D1D5 −D2D4
, Bn =

−1
η0

D1D6 −D3D4

D1D5 −D2D4
(42)

where the coefficients D1 to D6 are defined as follows:

D1 =
jk0zk0ρ

k2
0

(
jk0H

′2
n(k0ρρ0)− (s + a)

ρ0

(
H ′2

n(k0ρρ0)

+ρ0k0ρH
′′2
n(k0ρρ0)

))
(43)

D2 =
−n

k0η0ρ0

(
jk0H

2
n(k0ρρ0)− (s + a)k0ρH

′2
n(k0ρρ0)

)
(44)

D3 =
−jk0zk0ρ

k2
0

j−n

(
jk0J

′
n(k0ρρ0)− (s + a)

ρ0

(
J ′n(k0ρρ0)

+ρ0k0ρJ
′′
n(k0ρρ0)

))
(45)
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D4 =
nη0

k0ρ0

(
jk0H

2
n(k0ρρ0)− (s− a)k0ρH

′2
n(k0ρρ0)

)
(46)

D5 =
jk0zk0ρ

k2
0

(
jk0H

′2
n(k0ρρ0)− (s− a)

ρ0

(
H ′2

n(k0ρρ0)

+ρ0k0ρH
′′2
n(k0ρρ0)

))
(47)

D6 =
−nη0

k0ρ0
j−n

(
jk0Jn(k0ρρ0)− (s− a)k0ρJ

′
n(k0ρρ0)

)
(48)

Now, using (37) and (38), RCS and cross to co-polarization fields can
be determined.

By considering the similarity between the coefficients C1 to C6

with D1 to D6, there seems to be a relationship between the unknown
coefficients An and Bn in TEZ and TMZ polarizations. In TMZ

polarization, if a is replaced with −a, it can be easily proved that
the new coefficients of An and Bn are equal with coefficients of An

and Bn for TEZ polarization respectively. In other words, to obtain
the unknown coefficients of An and Bn for TEZ polarization, it is
only coefficient to change a to −a for the coefficients of An and Bn

in TMZ polarization. In the special case of a = 0, the coefficients
of An and Bn are equal for two polarizations. Normalized RCS and
cross to co-polarization for boundary conditions of DB, D’B’, PEC and
PMC for both TMZ and TEZ polarization are plotted in Figs. 5 and 6,
respectively.

As can be observed, RCS and cross to co-polarization for DB
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Figure 5. Normalized bistatic RCS and cross to co-polarization as a
function of ϕ for different boundary conditions for TMZ polarization,
θi = π/4 and ρ0 = 0.6λ0.
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Figure 6. Normalized bistatic RCS and cross to co-polarization as a
function of ϕ for different boundary conditions for TEZ polarization,
θi = π/4 and ρ0 = 0.6λ0.

and D’B’ boundaries are the same for both polarization. It happens
since, for these boundaries, a = 0; therefore, RCS and cross to co-
polarization are independent from type of polarizations. On the other
hand, for PEC and PMC boundaries, a has a non-zero value and
therefore RCS has different behaviors for two polarizations. Another
property observed in Figs. 5 and 6 is that cross polarization is created
for oblique incidence to DB and D’B’ cylinder. The cross polarization
fields are functions of ϕ and it can be proven in general case that, for
all values of s and a, cross-polarization is null in forward and backward
directions.

3.3. The Optimum Choice of Boundary Conditions for
Increasing or Decreasing the RCS

Considering that the aim is to minimize or maximize RCS in forward or
backward directions and, if goal is desired for a specific polarization or
both polarizations, the optimum boundary conditions can be chosen. If
minimizing or maximizing the forward and backward RCS is desirable
for both polarizations, a useful method is to select a = 0; therefore,
RCS will be the same for both polarizations and the desired goal can be
achieved by optimum choice of s. Normalized backward and forward
RCS versus s are plotted in Figs. 7(a) and (b) respectively. It can
be observed that Normalized RCS changes in the range 2.5 to 32 for
forward and 0.5 to 2.5 in the backward directions.

However, if the goal is to optimize the RCS for a particular
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polarization, the two parameters of s and a can be chosen arbitrarily.
For example, normalized forward and backward RCS for TEZ

polarization are plotted in Fig. 8 for different values of s and a. In this
case, Normalized RCS changes in the ranges of 2.15 to 38.2 and 0.08 to
7.2 in forward and backward directions, respectively. Normalized RCS
and cross to co-polarization versus ϕ are plotted in Fig. 9 for different
values of s and a, which give the maximum and minimum values of the
forward and backward RCS.
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Figure 7. Normalized backward and forward RCS as a function of
−10 < Ims < 10. Res = 0.02, a = 0, θi = π/4 and ρ0 = 0.6λ0.
(a) Normalized backward RCS. (b) Normalized forwardRCS.
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Figure 8. Normalized forward and backward RCS as a function of
−5 < Ims, Ima < 5 for TEZ polarization. Res = 0.02, θi = π/4 and
ρ0 = 0.6λ0. (a) Normalized backward RCS. (b) Normalized forward
RCS.
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Figure 9. Normalized bistatic RCS and cross to co-polarization as
a function of ϕ for different values of s and a for TEZ polarization,
θi = π/4 and ρ0 = 0.6λ0.

4. CONCLUSIONS

This paper investigated the problem of scattering from cylindrical
structures with MI boundary conditions. Initially, the normally
incident uniform plan wave to the MI cylinder was studied, and it
was shown that this structure acted like an impedance cylinder with
different surface impedances for two TEZ and TMZ polarizations.
Then, oblique incidence to MI cylinder was investigated and it is
observed that cross polarization was created in this case. It was
demonstrated that DB and D’B’ had cross polarization in oblique
incidence and therefore could not act as PEC and PMC for TEZ

and TMZ polarizations. This happened since, for both TEZ and
TMZ polarizations, radial components of electric and magnetic fields
existed. It was also shown that the forward or backward RCS can be
significantly increased or decreased by selecting the optimum values of
boundary conditions.

So far, various methods were presented for realizations of the
DB and D’B’ boundary in [6–10], However the realization of the MI
boundary is still a challenge and is a topic for future study.
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backscattering from self-dual objects of finite size,” IEEE Trans.
on Antennas and Propag., Vol. 57, No. 9, 2725–2731, Sep. 2009.

13. Balanis, A., Advanced Engineering Electromagnetic, John Wiley
& Sons, 1989.


