Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-13
An Impedance-Permeability Self-Resonance of Inductance Coil with Metamaterials
By
Progress In Electromagnetics Research, Vol. 138, 21-30, 2013
Abstract
An impedance-permeability (Z-μr) resonance phenomenon is firstly founded and numerically demonstrated when electromagnetic metamaterials with negative permeability are firstly introduced into inductance coil. Numerical results reveal that the impedance-permeability relationship exhibits an extraordinary self-resonant phenomenon at a certain negative value of relative permeability, which is related to the dimensions of the core but nearly independent to the coil size. Such a mechanism is proposed to increase the sensitivity of eddy current (EC) sensors up to about 270 times, offering a new method to greatly improve the sensitivity of EC sensors and the spatial resolution with micrometer scale.
Citation
Qiang Yu, Qian Zhao, and Yonggang Meng, "An Impedance-Permeability Self-Resonance of Inductance Coil with Metamaterials," Progress In Electromagnetics Research, Vol. 138, 21-30, 2013.
doi:10.2528/PIER12122408
References

1. Sakran, , F., M. Golosovsky, H. Goldberger, D. Davidov, and A. Frenkel, "High-frequency eddy-current technique for thickness measurement of micron-thick conducting layers ," Appl. Phys. Lett., Vol. 78, No. 11, 1634-1636, 2001.
doi:10.1063/1.1355298

2. Lantz, , M. A., S. P. Jarvis, and H. Tokumoto, "High resolution eddy current microscopy," Appl. Phys. Lett., Vol. 78, No. 3, 383-385, 200.
doi:10.1063/1.1339840

3. Dodd, , C. V., W. E. Deeds, and , "Analytical solutions to eddy-current probe-coil problems," Journal of Applied Physics, Vol. 39, No. 6, 2829-2838, 1968.
doi:10.1063/1.1656680

4. Uzal, E., J. H. Rose, and , "The impedance of eddy current probes above layered metals whose conductivity and permeability vary continuously," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1869-1873, 1993.
doi:10.1109/20.250771

5. Hugo, G. R., S. K. Burke, and , "Impedance changes in a coil due to a nearby small conducting sphere," Phys. D: Appl. Phys., Vol. 21, 33-38, 1988.
doi:10.1088/0022-3727/21/1/005

6. Yin, , W. and A. J. Peyton, "Thickness measurement of non-magnetic plates using multi-frequency eddy current sensors," NDT&E Int., Vol. 40, 43-48, 2007.
doi:10.1016/j.ndteint.2006.07.009

7. Yin, , W. and A. J. Peyton., "Thickness measurement of metallic plates with an electromagnetic sensor using phase signature analysis," IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 8, 1803-1807, 2008.
doi:10.1109/TIM.2008.923777

8. Tai, , C. C., "Characterization of coatings on magnetic metal using the swept-frequency eddy current method," Rev. Sci. Instrum.,, Vol. 71, No. 8, 3161-3167, 2000.
doi:10.1063/1.1304862

9. Watson, , C. C., W. K. Chan, and , "High-spatial-resolution semiconductor characterization using a microwave eddy current probe," Appl. Phys. Lett., Vol. 78, No. 1, 129-131, 2001.
doi:10.1063/1.1337639

10. Hamia, , R., C. Cordier, S. Saez, and C. P. Dolabdjian, "Eddy-current nondestructive testing using an improved GMR magnetometer and a single wire as inducer: A FEM performance analysis ," IEEE Transactions on Magnetics, Vol. 46, No. 10, 3731-3737, 2010.
doi:10.1109/TMAG.2010.2052827

11. Zhao, , Q., Q. Yu, Z. L. Qu, L. Si, X. L. Lu, and Y. G. Meng, "Thickness measurement of nano-metallic film with electromagnetic sensor under large sensor-sample distance ," 2011 IEEE Instrumentation and Measurement Technology Conference,, 39-42, 2011.

12. Chen, , H. T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, , "Active terahertz metamaterials devices," Nature, Vol. 444, 597, 2006.
doi:10.1038/nature05343

13. Valagiannopoulos, , C. A., , "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

14. Butt, , H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

15. Pendry, , J. B., , "Negative refraction makes a perfect lens," Phys. Rev. Lett., No. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

16. Yuan, Y., L. Ran, H. S. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, "Backward coupling waveguide coupler using left-handed material ," Appl. Phys. Lett., Vol. 88,-211903, , 2006.

17. Boyvat, , M., C. V. Hafner, and , "Molding the flow of magnetic ¯eld with metamaterials: Magnetic field shielding," Progress In Electromagnetics Research, Vol. 126, 303-316, 2012.
doi:10.2528/PIER12022010

18. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research,, Vol. 116, 409-423, 2011.

19. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, , Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461

20. Chen, , H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

21. Shelby, , R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

22. Zhao, , Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., , Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402

23. Smith, , D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

24. Pendry, , J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

25. Shao, , J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research,, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507

26. Zhang, , J. and N. A. Mortensen, "Ultrathin cylindrical cloak," Progress In Electromagnetics Research, Vol. 121, 381-389, 2011.

27. Li, , J., H. Liu, and , "A class of polarization-invariant directional cloaks by concatenation via transformation optics," Progress In Electromagnetics Research, Vol. 123, 175-187, 2012.

28. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research,, Vol. 124, 151-162, 2012.

29. lo, , L., F. Jangal, M. Darces, J.-L. Montmagnon, and M. Helier, "Negative permittivity media able to propagate a surface wave," Progress In Electromagnetics Research, Vol. 115, 1-10, 2011.

31. Li, , Y. Y., G. D. Li, and , Ferrite Physics, , Science Press, , 1978.

32. Slama, J., R. Dosoudil, R. Vicen, A. Gruskova, V. Olah, I. Hudec, and E. Usak, , "Frequency dispersion of permeability in ferrite polymer composites," Journal of Magnetism and Magnetic Materials, Vol. 254{255, 195{197, 2003, Vol. 254-255, 195-197, 2003.