Vol. 28
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-21
Model Selection for Investigation of the Field Distribution in a Reverberation Chamber
By
Progress In Electromagnetics Research M, Vol. 28, 169-183, 2013
Abstract
In this work two model selection criteria, i.e., Akaike's information criterion (AIC) and minimum description length (MDL), are applied to measurements in a RC with Rayleigh, Rician, Nakagami, Bessel K, and Weibull distributions as the distribution candidate set. In spite of small differences of the AIC and MDL tests (due to their different penalty terms on distribution parameters), both criteria result in similar conclusions. Results show that the Rayleigh distribution provides the overall good fit to the Cartesian field amplitude, especially for an overmoded RC, and that the Weibull distribution provides good fit to the Cartesian field amplitude in an undermoded or loaded RC. In addition, it is found that both the Rician and Weibull distributions provide improved approximations of the Cartesian field amplitude in a loaded RC with non-negligible unstirred components and that the transition from undermoded RC to overmoded RC depends not only on the operating frequency and mode-stirrer efficiency (as it is commonly believed) but also on source stirring and RC loading.
Citation
Xiaoming Chen, "Model Selection for Investigation of the Field Distribution in a Reverberation Chamber," Progress In Electromagnetics Research M, Vol. 28, 169-183, 2013.
doi:10.2528/PIERM12122106
References

1. Kostas, J. G. and B. Boverie, "Statistical model for a mode-stirred chamber," IEEE Trans. on Electromagn. Compat., Vol. 33, No. 4, 366-370, Nov. 1991.
doi:10.1109/15.99120

2. Corona, P., G. Ferrara, and M. Migliaccio, "Reverberating chamber electromagnetic field in presence of an unstirred component," IEEE Trans. on Electromagn. Compat., Vol. 42, No. 2, 111-115, 2000.
doi:10.1109/15.852404

3. Orjubin, G., E. Richalot, S. Mengue, and O. Picon, "Statistical model of an undermoded reverberation chamber," IEEE Trans. on Electromagn. Compat., Vol. 48, No. 1, 248-250, Feb. 2006.
doi:10.1109/TEMC.2006.870705

4. Arnaut, L. R., "Limit distributions for imperfect electromagnetic reverberation," IEEE Trans. on Electromagn. Compat., Vol. 45, No. 2, 357-377, Aug. 2003.
doi:10.1109/TEMC.2003.811301

5. Lemoine, C., P. Besnier, and M. Drissi, "Investigation of reverberation chamber measurements through high-power goodness-of-fit tests," IEEE Trans. on Electromagn. Compat., Vol. 49, No. 4, 745-755, Nov. 2007.
doi:10.1109/TEMC.2007.908290

6. Primiani, V. M. and F. Moglie, "Numerical simulation of reverberation chamber parameters affecting the received power statistics," IEEE Trans. on Electromagn. Compat., Vol. 54, No. 3, 522-532, 2012.
doi:10.1109/TEMC.2011.2167337

7. Cerri, G., V. M. Primiani, S. Pennesi, and P. Russo, "Source stirring mode for reverberation chambers," IEEE Trans. on Electromagn. Compat., Vol. 47, No. 4, 815-823, 2005.
doi:10.1109/TEMC.2005.858757

8. Chen, X., "On independent platform sample number for reverberation chamber measurements," IEEE Trans. on Electromagn. Compat., Vol. 54, No. 6, 1306-1309, Dec. 2012.
doi:10.1109/TEMC.2012.2222417

9. Sorrentino, A., L. Mascolo, G. Ferrara, and M. Migliaccio, "The fractal nature of the electromagnetic field within a reverberating chamber," Progress In Electromagnetics Research C, Vol. 27, 157-167, 2012.
doi:10.2528/PIERC11122702

10. Chen, X., "Measurements and evaluations of multi-element antennas based on limited channel samples in a reverberation chamber," Progress In Electromagnetics Research, Vol. 131, 45-62, 2012.

11. Staniec, K. and A. J. Pomianek, "On simulating the radio signal propagation in the reverberation chamber with the ray launching method," Progress In Electromagnetics Research B, Vol. 27, 83-99, 2011.

12. Arsalane, N., M. Mouhamadou, C. Decroze, D. Carsenat, M. A. Garcia-Fernandez, and T. Monediere, "3GPP channel model emulation with analysis of MIMO-LTE performances in model emulation with analysis of MIMO-LTE performances in reverberation chamber," Int. J. Antennas Propaga., Vol. 2012, Article ID 239420, 8 Pages, 2012.

13. Holloway, C. L., D. A. Hill, J. M. Ladbury, P. F. Wilson, G. Koepke, and J. Coder, "On the use of reverberation chamber to simulate a Rician radio environment for the testing of wireless devices," IEEE Trans. on Antennas and Propag., Vol. 54, No. 11, 3167-3177, Nov. 2006.
doi:10.1109/TAP.2006.883987

14. Agostino, R. B. and M. A. Stephen, Goodness-of-fit Techniques, Marcel Dekker, 1986.

15. Akaike, H., "Information theory and an extension of the maximum likelihood principle," Proc. Int. Symp. Inf. Theory, Budapest, Hungary, 1973.

16. Rissanen, J., "Modeling by shortest data description," Automatica, Vol. 14, 465-471, 1978.
doi:10.1016/0005-1098(78)90005-5

17. Linhart, H. and W. Zucchini, Model Selection, John Wiley & Sons, 1986.

18. Kay, S. M., "Fundamentals of Statistical Signal Processing: Estimation Theory," Prentice Hall, 1993.

19. Chen, X., P.-S. Kildal, and S.-H. Lai, "Estimation of average Rician K-factor and average mode bandwidth in loaded reverberation chamber," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1437-1440, 2011.
doi:10.1109/LAWP.2011.2179910