Vol. 136
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-21
Reconstruction of Faulty Cable Network Using Time-Domain Reflectometry
By
Progress In Electromagnetics Research, Vol. 136, 457-478, 2013
Abstract
Based on Time-Domain Reflectometry (TDR) technique, a novel method which could locate faults on the coaxial cable distribution network by using Support Vector Machine (SVM) is proposed in this paper. This approach allows the faulty network to be reconstructed by estimating the lengths of branches. A State-transition Matrix model is employed to simulate the TDR response at any port and evaluate the transfer function between two points. SVM is used to solve the inversion problem through training datasets created by the State-transition matrix model. Compared to the existing reflectometry methods, our proposed method can tackle multiple faults in the complex cable networks. Numerical and experimental results pointing out the performance of the SVM model in locating faults are reported.
Citation
Xiaolong Zhang, Minming Zhang, and Deming Liu, "Reconstruction of Faulty Cable Network Using Time-Domain Reflectometry," Progress In Electromagnetics Research, Vol. 136, 457-478, 2013.
doi:10.2528/PIER12121402
References

1. Boyd, E., H. Elbakoury, M. Hajduczenia, and A. Liu, "EPON over Coax (EPoC)," IEEE Commun. Mag., Vol. 50, No. 9, 88-95, 2012.
doi:10.1109/MCOM.2012.6295717

2. IEEE 802.3 Working Group, 2012, http://www.ieee802.org/3/ep-oc.

3. Lelong, A., L. Sommervogel, N. Ravot, and M. Carrion, "Distributed reflectometry method for wire fault location using selective average," IEEE Sens. J., Vol. 2, 300-310, 2010.
doi:10.1109/JSEN.2009.2033946

4. Cataldo, A., G. Cannazza, E. De Benedetto, and N. Giaquinto, "Experimental validation of a TDR-based system for measuring leak distances in buried metal pipes," Progress In Electromagnetics Research, Vol. 132, 71-90, 2012.

5. Kwak, K. S., T. Choe, J. Park, and T. Yoon, "Application of time-frequency domain reflectometry for measuring load impedance," IEICE Electronics Express, Vol. 5, 107-113, 2008.
doi:10.1587/elex.5.107

6. Schuet, S., D. Timucin, and K. Wheeler, "A model-based probabilistic inversion framework for characterizing wire fault detection using TDR," IEEE Trans. Instrum. Meas., Vol. 60, 1654-1663, 2011.
doi:10.1109/TIM.2011.2105030

7. Pourahmadi-Nakhli, M. and A. A. Safavi, "Path characteristic frequency-based fault locating in radial distribution systems using wavelets and neural networks ," IEEE Trans. Power Del., Vol. 26, 772-781, 2011.
doi:10.1109/TPWRD.2010.2050218

8. Vakula, D. and N. V. S. N. Sarma, "Using neural networks for fault detection in planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 14, 21-30, 2010.
doi:10.2528/PIERL10030401

9. Meng, J., Y. Gao, and Y. Shi, "Support vector regression model for measuring the permittivity of asphalt concrete," IEEE Microw. Wirel. Co., Vol. 17, No. 12, 2007.
doi:10.1109/LMWC.2007.910462

10. Zhang, Y. and L. Wu, "An Mr brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.

11. Thukaram, D., H. P. Khincha, and H. P. Vijaynarasimha, "Artificial neural network and support vector machine approach for locating faults in radial distribution systems ," IEEE Trans. Power Del., Vol. 20, No. 2, 710-721, 2005.
doi:10.1109/TPWRD.2005.844307

12. Angiulli, G., D. De Carlo, G. Amendola, E. Arnieri, and S. Costanzo, "Support vector regression machines to evaluate resonant frequency of elliptic substrate integrate waveguide resonators," Progress In Electromagnetics Research, Vol. 83, 107-118, 2008.
doi:10.2528/PIER08041803

13. Ni, J., L. Ren, C. Zhang, and S. Yang, "Abrupt event monitoring for water environment system based on KPCA and SVM," IEEE Trans. Instrum. Meas., Vol. 61, 980-989, 2012.
doi:10.1109/TIM.2011.2173000

14. Wu, Y., Z. X. Tang, B. Zhang, and Y. Xu, "Permeability measurement of ferromagnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
doi:10.2528/PIER07012801

15. Chen, W. Y. and K. Kerpez, "Coaxial cable distribution plant performance simulation for interactive multimedia TV," Global Telecommunications Conference, 173-177, 1995.

16. Zimmermann, M. and K. Dostert, "A multipath model for the powerline channel," IEEE Trans. Commun., Vol. 50, 553-559, 2002.
doi:10.1109/26.996069

17. Cristianini, N. and J. S. Taylor, An Introduction to Support Vector Machines, Cambridge University Press, London, 2000.

18. Tan, C. P., J. Y. Koay, K. S. Lim, H. T. Ewe, and H.-T. Chuah, "Classification of multi-temporal SAR images for rice crops using combined entropy decomposition and support vector machine technique," Progress In Electromagnetics Research, Vol. 71, 19-39, 2007.
doi:10.2528/PIER07012903

19. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM based-estimators for inverse scattering problems ," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

20. Bottou, L., O. Chapelle, D. DeCoste, and J. Weston, Large Scale Kernel Machines, MIT Press, Cambridge, MA, 2007.

21. Cawley, G. C., "Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs," International Joint Conference on Neural Networks, IJCNN, 1661-1668, 2006.

22. Kowalski, M., "A simple and efficient computational approach to chafed cable time-domain reflectometry signature prediction," Proc. Annu. Rev. Progress ACES Conf., 2009.