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Abstract—Based on Time-Domain Reflectometry (TDR) technique, a
novel method which could locate faults on the coaxial cable distribution
network by using Support Vector Machine (SVM) is proposed in this
paper. This approach allows the faulty network to be reconstructed
by estimating the lengths of branches. A State-transition Matrix
model is employed to simulate the TDR response at any port and
evaluate the transfer function between two points. SVM is used to
solve the inversion problem through training datasets created by the
State-transition matrix model. Compared to the existing reflectometry
methods, our proposed method can tackle multiple faults in the
complex cable networks. Numerical and experimental results pointing
out the performance of the SVM model in locating faults are reported.

1. INTRODUCTION

The coaxial cable network is widely used in the multi-service access
for residential subscribers, such as CATV (Community Antenna
Television), HFC (Hybrid Fiber Coaxial), DOCSIS (Data Over Cable
System Interface Specification), and etc.. Moreover, the process
of standardization of EPoC (EPON over Coax) in the IEEE 802.3
Working Group is currently underway. At the time of writing, a
Study Group has been formed to examine EPoC as well as the cable
network [1, 2]. In order to guarantee the quality of service to users,
the diagnosis and location of fault on the network is a crucial common
problem.

Generally, there are two main kinds of cable network faults: “hard
faults” and “soft faults”. The hard faults are mostly open or short
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circuits, which lead to a strong change when the signal propagates
through the network. The soft faults are caused by discontinuities
of the impedance in network, e.g., damaged insulation and water
infiltration. If the soft faults are not repaired for a long time, they
can eventually develop into hard faults. Therefore, it is important to
detect and locate faults as early as possible.

During the last decade, many techniques have been proposed to
locate defects in cables [3–5]. Among them, reflectometry method is
the most important one and still widely used today. For instance, a
number of declinations of reflectometry method have been proposed to
improve the location capacities by using optimized testing signals and
developing more accurate reflectometry method [6]. Although these
methods have better capabilities to locate fault on single cable, it is
hard for them to locate faults on the branched network. In practice,
the coaxial cables are always used in distribution network with other
components such as amplifier, splitter, tap, and etc.. Hence, a new
method which could locate faults on real cable network is highly
desirable.

Inversion problem is another issue for the reflectometry method.
The junctions and ends of branched network all result in multiple
reflections in the reflectometry trace, so it is difficult to extract
fault location. Hence, it requires an intelligent algorithm to locate
the fault on branched network from the reflectometry trace. With
the development of artificial intelligence technology, artificial neural
network (ANN) with strong nonlinear mapping and robust ability
has been widely applied to solve the inversion problem and locate
fault [7, 8]. However, there is no universal method to determine an
optimal ANN structure in terms of the number of hidden layers and
number of neurons in each layer. Moreover, ANN has the shortcomings
of overfitting and sinking into the local optimal. Compared to
traditional ANN, SVM (Support Vector Machine) exhibits the major
advantage of global optimization, higher generalization capability and
input-dimension independence. Alternatively, SVM unfold a promising
means to estimate nonlinear system models accurately [9–14].

In this paper, an efficient method, based on TDR (Time-Domain
Reflectometry) and SVM, is presented to locate multiple faults on
complex cable network. A State-transition Matrix model is introduced
to simulate the TDR response at any port and evaluate the transfer
function between two points. The inversion problem is solved by the
SVM. Comparing with other common methods which require accurate
length of each cable or just locate fault on single cable, this method
allows the faulty network to be reconstructed by estimating the lengths
of branches, only need to know the topology of distribution network.
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The aim of the paper is finding the relationship between reflectometry
response and topology network, and solving the inversion problem by
SVM to reconstruct the network. Since this method is operated with
topology-described matrixes, it is easy to implement the process by
computer and develop it into embedded system.

The paper is organized as follows. First, the numerical model of
TDR and the inversion model by SVM are built in Section 2, including
the basic ideas and operating procedure. Next, the algorithm’s
effectiveness is demonstrated and the estimated and measured results
obtained from actual coaxial cable distribution networks are presented
in Section 3. Finally, Section 4 gives the conclusion.

2. THEORY OF THE PROPOSED METHOD

The proposed method can be used to locate multiple faults on complex
cable network. First, the topology of analyzed faulty network need
to ascertain (without accurate lengths of cables), and each model for
component in the network is built, including the coaxial cable, splitter,
tap and so on. Next, State-transition Matrix is introduced to estimate
the TDR responses of networks with different fault locations. After
that, the TDR curves can be used to train the SVM. Finally, once
being correctly trained, the SVM can locate faults from the measured
TDR trace.

2.1. Numerical Model for Each Component

When the topology of network is definite, the components are also
determined. In most residential areas, the topology of the cable
distribution network is the same, the difference is only the length of
cable. Generally, a coaxial cable distribution network consists of many
coaxial cables and some devices, such as splitters, taps, and various
loads. According to the transmission line theory, the propagation
constant and transfer function of a cable with length l can be simply
expressed by

γ = k1

√
f + k2f + j · 2πf/v (1)

H(f, l) = e−γ·l = e−(k1
√

f+k2f+j·2πf/v)·l (2)

where f is the frequency, v the velocity of propagation, and k1, k2 are
constants and depended on the type of cable [15].

Based on the measurement of a certain length cable by the Vector
Network Analysis (VNA), the amplitude-frequency curve and phase-
frequency curve are obtained. Using a least-squares fitting algorithm,
parameters k1, k2 and v can be determined through (1). In this paper,
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the same type of cable (RG-6) are used to construct the network, and
their regressive parameters are k1 = 8.53e − 6, k2 = −2.95e − 10,
v = 2.45e + 8, and the characteristic impedance Z0 is 75Ω.

Other important devices in the cable network are splitters and
taps, etc.. Generally, there are two different models for these devices:
the first one is theoretically calculated model; the second one is the
database model. For greatest accuracy, the second one is chosen and
the actual scattering matrixes of devices are measured by VNA. In
this paper, the frequency range is from 1 MHz to 1.2 GHz, so that the
scope of measurement should cover this frequency range. Moreover,
the measured scattering matrix should be changed to the reference
characteristic impedance of cable, i.e., Z0.

2.2. State-transition Matrix for Complex Network Topology

When a signal is sent down the cable network, it will propagate through
numerous paths from transmitter to receiver. Those multiple paths are
generated by the impedance mismatch terminals, ports of devices and
faults. Each path is characterized by a propagation loss factor e−αli ,
weighting gi, and a delay ti, the transfer function from transmitter to
receiver can be expressed as follows [16]:

H(f) = lim
n→∞

N∑

i=1

gi · e−αli · e−j2πfti = lim
n→∞

N∑

i=1

gi · e−γli (3)

where li is the length of the path i, γ the propagation constant
expressed in (1), and N the number of paths. The weighting factor
gi is a complex number which can be expressed as the product of all
reflection and transmission coefficients, it can be expressed as follows:

gi =
M1∏

k=1

ρik

M2∏

n=1

τin (4)

where M1 and M2 are the number of reflection and transmission
coefficients in the path i, respectively.

As mentioned above, the scattering matrix at each interested
frequency has been changed to Z0, so that the reflection coefficient
ρ, at the port j of a device, is equal to the element Sjj in scattering
matrix, and the transmission coefficient τ from the port i to j is equal
to Sji. Moreover, the reflection and transmission can be occurred at
the mismatch terminal or fault. According to the basic transmission
line theory, the reflection and transmission coefficient are given as

ρ = (ZL − Z0)/(ZL + Z0) (5)
τ = 1 + ρ = (2ZL)/(ZL + Z0) (6)
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where ZL is the impedance of the mismatch terminal or fault and Z0

the characteristic impedance of cable.
In order to estimate the transfer function expressed in (3), a novel

algorithm is developed to calculate the all paths. The algorithm treats
the network as a finite state flow graph. A state is defined by two
variables: one is the last cable that the signal has propagated along;
another is the current node that the signal is in. The state is denoted as
(last cable — current node). When the signal propagates from one state
to another, a state transition occurs. So a signal will go through many
state transitions from transmitter to receiver. For example, shown in
Fig. 1 is a Y-type topology where three cables (RG-6) are connected
together by a splitter (“203”). As the reflectometry, there are many
paths from transmitter T1 and back to receiver T1, such as the path
expressed as follows:

i = 1 : T1-(L1-C1)-(L2-T2)-(L2-C1)-(L1-T1) (7)
where each part in a bracket is a state, and the frequency response of
this path can expressed by

H1(f) =
(
S21e

−γ·L1
) (

ρT2e
−γ·L2

) (
S12e

−γ·L2
) (

τT1e
−γ·L1

)
(8)

where each expression in a bracket is the corresponding frequency
response of a state transition, e.g., the element S21e

−γ·L1 , is happened
when the signal propagates from state L1C1 to the state L2T2.

In order to calculate and cumulate the all paths expressed in (3),
all the allowable states should be found out in the topology network.
Supposing that there is a total number of N states in the topology
network (in fact, N is twice of the numbers of cables), they are arranged
as sequence Q, the corresponding lengths of the cables in these states
are arranged in a vector L, i.e.,

Q = [q1 q2 . . . qN ] (9)
L = [l1 l2 . . . lN ] (10)

L2

T1
L1

L3

T2

T3

C1

Figure 1. A simple topology of coaxial cable network.
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If the frequency responses of the state transitions between any two
states in the sequence Q can be calculated, a N × N state-transition
matrix G can be formulated with each row and column corresponding
to a state, i.e.,

G =




a11e
−γ·l1 a12e

−γ·l2 . . . a1Ne−γ·lN
a21e

−γ·l1 a22e
−γ·l2 . . . a2Ne−γ·lN

...
...

. . .
...

aN1e
−γ·l1 aN2e

−γ·l2 . . . aNNe−γ·lN


 (11)

where the rows of the matrix are labeled by the current state, and the
columns are labeled by the next state. Each element in G is frequency
response of a state transition, i.e., aije

−γ·lj is the frequency response of
a state transition from state qj to state qi. So G includes all the state
transitions and indicates how the signal will propagate in the coaxial
cable network.

2.3. Reflectometry Response of Complex Network Topology

It is very interesting that, the power of G has an important property:
the element Gk(i, j) expresses the sum of frequency responses of all
possible paths through k state transitions, and each path is from the
beginning state qj to the end state qi. Supposing that qj and qi are
corresponding to the transmitter Tt and receiver Tr, and the length of
the cable connected to the receiver is lr, the transmission coefficient
at the receiving terminal is τr. So multiplying Gk(i, j) by τre

−γ·lr , the
corresponding sum of responses with k + 1 state transitions from Tt to
Tr are obtained:

H ′
k+1(i, j) = τre

−γ·lr ·Gk(i, j)

=
N∑

nk−1=1

N∑

nk−2=1

· · ·
N∑

n2=1

N∑

n1=1

aink−1
ank−1nk−2

· · · an2n1an1j

×e−γ·(li+lnk−1
+lnk−2

+···+ln2+ln1 )τre
−γ·lr (12)

It is supposed that direct connection between terminals does
not exist. In this respect, the frequency response of all paths from
transmitter Tt to receiver Tr can be expressed as:

H ′(i, j) =
∞∑

k=2

H ′
k(i, j) = τre

−γ·lr ·
∞∑

k=1

Gk(i, j)

= τre
−γ·lr ·

[ ∞∑

k=1

Gk

]
(i, j)=τre

−γ·lr ·
[
G·[E−G]−1

]
(i, j)(13)
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where E is the identity matrix.
For convenience, an ending-state-transition matrix D is formed,

i.e.,
D = Diag

[
τ1e

−γ·l1 τ2e
−γ·l2 · · · τNe−γ·lN ]

(14)

Pre-multiplying G · [E − G]−1 by D, an innovative matrix can be
obtained

H = D ·G · [E−G]−1 (15)

It can be noted that the H ′(i, j) expressed by (13) is the element
of matrix H with the row i and column j. It is the channel response
from the beginning state qj to the ending state qi. So the matrix H
includes the all frequency responses between any two points, together
with the reflectometry information at any port.

H(i, j) is the frequency domain characteristic of channel from
transmitter Tt to receiver Tr. In order to get the time-domain
information, an inverse Fourier transform can be done to the sequence
as follows

ρij(t) = IFT(H(i, j)) (16)

It is worth to be noted that, if the transmitter Tt and receiver Tr

are the same point, it is the situation of reflectometry, and ρij(t) is the
reflectometry response, i.e., TDR. If they are different points, ρij(t)
is the impulse response of the channel, i.e., hij(t). Although there
are some differences between two cases, ρij(t) contains the structural
information of network topology.

2.4. Reconstruction of Network Topology from
Reflectometry Responses by SVM

In the TDR curve, horizontal axis is the time T = [t1, t2, . . . , tn],
vertical axis is the corresponding reflection coefficient Γ =
[Γ1, Γ2, . . . ,Γn], both of them are discrete sequences. It is worth to
note that the time sequence has the same interval ∆t (i.e., ti =
t1 + ∆t × (i − 1)). Generally, there are several pulses caused by
the impedance discontinuities in the curve, each point (i.e., device,
terminal, and fault) in the cable network is related to a pulse Γz in
the TDR trace. For example, there is a sample TDR curve shown in
Fig. 2. The first pulse at t51 is generated by point C1, the second pulse
at t136 is generated by T2, and the third pulse at t177 is generated
by the fault F1. So, if the right corresponding pulse for each point
can be distinguished, the fault network can be reconstructed by the
estimated lengths of cables. For each point in the network, how to find
the corresponding pulse’s index z in [Γ1, Γ2, . . . ,Γn] is an inversion
problem, and can be solved by the SVM. Take the location of fault
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Figure 2. A sampled TDR curve at the port T1.

F1, for example, if the reflection coefficient Γ = [Γ1,Γ2, . . . , Γ300] are
obtained by measurement on actual network, the location of fault can
be acquired by calculating the indexes related to C1 and F1 in Γ,
i.e., 51 and 177, then the location of fault F1 can be calculated as
(t177 − t51)× v = 126∆tv, and the length of cable L1 is 51∆tv, where
v is the velocity of propagation.

SVM maps the input data into a high dimensional feature space
and constructs a linear regression function therein. The SVM model
is given N training data T =

{
(Xi, yi)

}N

i=1
∈ Rm×R where Xi is the

input vector to the SVM model and yi is the actual output value, from
which it learns an input-output relationship. In our model, the input
Xi is the reflection coefficient Γ = [Γ1,Γ2, . . . , Γm], the output is the
corresponding index z (with Γz is the pulse caused by the estimated
point). The SVM model can be expressed as follows:

y = f(X) =
N∑

i=1

ωiφi(X) + b = WT ϕ(X) + b (17)

Equation (17) is a nonlinear regression model because the resulting
hyper-surface is a nonlinear surface hanging over m-dimensional input
space. The nonlinear function is learned using a linear learning machine
of which the learning algorithm minimizes a convex functional. The
coefficients W and b are the support vector weight and bias that
estimated by minimizing the following regularized risk function:

R(W) = 1/2WTW + C
N∑

i=1

|yi − f(X)|ε (18)

where
|yi − f(X)|ε = max

{
0, |yi − f(X)| − ε

}
(19)
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Constant C is known as a regularization parameter. The
regularization parameter determines the trade-off between the
approximation error and the weight vector norm. Insensitive loss
parameter ε identifies allowed minimum fitting error of the learning
machine, which affects the number of support vector (SV). The
constants C and ε are user-specified parameters.

The foregoing regularized risk function is converted into the
following constrained risk function:

R (W, ξ, ξ∗) = 1/2WTW + C
N∑

i=1

(ξ + ξ∗) (20)

Subject to the constraints



yi −WT ϕ(X)− b ≤ ε + ξi

WT ϕ(X) + b− yi ≤ ε + ξ∗i , i = 1, 2, . . . , N

ξi, ξ
∗
i ≤ 0

(21)

The parameters ξi and ξ∗i are the slack variables that represent the
upper and lower constraints on the outputs of the system, respectively,
and are positive values. The constrained optimization problem of (20)
can be solved by its Lagrange dual:

max
αi,α∗i

{
− 1

2

N∑

i=1

N∑

j=1

(αi − α∗i )
(
αj − α∗j

)
(ϕ(Xi) · ϕ(Xj))

+
N∑

i=1

αi(yi − ε− ξi)− α∗i (yi − ε + ξi)
}

(22)

with constraints



N∑

i=1

(αi − α∗i ) = 0

0 ≤ αi, α
∗
i ≤ C, i = 1, 2, . . . , N

(23)

The kernel function K(Xi,X) = ϕT (Xi)ϕ(X) based on the
Mercer condition is applied within the formulation of this quadratic
programming problem. Solving (22) with constrains Equation (23)
determines the Lagrange multipliers α, α∗, and the regression function
of (17) becomes

y = f(X) =
N∑

i=1

(αi − α∗i )K(Xi,X) + b (24)
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The corresponding Karush-Kuhn-Tucker complementarity condi-
tions are




αi

(
WT ϕ(X) + b− yi − ε− ξi

)
= 0

α∗i
(
yi −WT ϕ(X)− b− ε− ξ∗i

)
= 0

(C − αi)ξi = 0, i = 1, 2, . . . , N

(C − α∗i )ξ
∗
i = 0

(25)

Therefore, the support vectors are points where exactly one of the
Lagrange multipliers is greater than zero. In the current research, the
radial basis function (RBF) is used, i.e.,

K(Xi,X) = exp(−γ‖Xi −X‖2) (26)

where γ is the kernel parameter, and decides the distribution
complexity of sample data in high-dimensional feature space, Xi is
the input vector to the SVM model.

The SVM optimization problem can be solved by dual formulation
using many special-purpose solvers [17, 18]. One of the most commonly
used solvers is LIBSVM [19]. The computational complexity of training
nonlinear SVMs with LIBSVM has been reported to be quadratic in
a number of training samples [20]. Before running LIBSVM code,
three important hyperparameters should be identified: error penalty
C, insensitive loss parameter ξ, and kernel parameter γ in SVM. In
this paper, the leave-one-out cross-validation approach is adopted to
infer values of the hyperparameters [21].

Using the generated datasets to train SVM, a certain interesting
range which contains the important reflected pulses is chosen, such as
time from tm to tn. So the inputs of the SVM is the corresponding
reflection coefficient sequence Γ = [Γm, Γm+1, . . . ,Γn], the output is
the index z (where the corresponding Γz is related to a special point,
such as C1 in Fig. 2, and the number of inputs is n−m+1. Generally,
there is only one output in a SVM model, so that the number of SVM
models for a cable network depends on the number of estimated points,
such as C1, T1, T2 and F1 in Fig. 2.

The input/output database are randomly divided into two
different sets: training set (80% of all samples) and testing set (20%
of all samples). The training set is used to optimize the values of
the hyperparameters and establish the best-performance SVM model;
the testing set is employed to evaluate the generalization capability of
the model. Based on the displacement error e = ymodel − y, the mean
absolute error (MAE) and root-mean-square error (rmse) of this model
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are defined as follows:

MAE =
1
Nt

Nt∑

i=1

|ei| (27)

rmse =

√√√√ 1
Nt

Nt∑

i=1

e2
i (28)

where Nt is the number of testing data set. Therefore, these two
quantitative metrics are used to indicate the performance of the SVM
model.

After being trained correctly, the SVM can effectively distinguish
the pulses in the TDR curve and calculate the length of each cable
from the measured reflectometry trace. Meanwhile, multiple faults on
the network can be located accurately.

To better understand the method, its flow diagram is shown in
Fig. 3. There are about five steps to implement the method: Step 1:
The topology of analyzed network need to ascertain, including the type
of each component. However, it is not necessary to know the accurate
length of each cable, as they can be calculated by the SVM from the
measured TDR. Step 2: The model is built for each component in the
network, including the coaxial cable, splitter, tap and so on. Step 3:
According to the topology of network, different lengths of branches and
different locations of multi-faults are set to the distribution network,
the range must be limited. Then, thousands of network samples,
with the same topology but different configuration, can be generated.
Therefore, thousands of TDR curves can be calculated by the State-
transition matrix. Step 4: The TDR curves are used to train the SVMs;

Figure 3. The flow diagram of this proposed method.
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(b)(a)

(d)(c)

7 m

10 m

4 m

Figure 4. A network sample in our laboratory. (a) Healthy network.
(b) Seriously damaged insulation. (c) Water infiltration (with salt).
(d) Hard fault.

meanwhile the leave-one-out cross-validation approach is adopted to
infer values of the hyperparameters. Step 5: After being trained
correctly, the SVM can effectively calculate the length of each cable and
extract the network topology from the measured reflectometry trace,
locate faults on the network which belong to the topology as well.

3. NUMERICAL AND EXPERIMENTAL RESULTS

To verify the performance of proposed SVM model, three coaxial cable
networks have been considered. As mentioned above, there are two
types of faults: soft faults and hard faults. Both of them will be
discussed as follows.

3.1. Location of Soft Faults

The soft faults are caused by discontinuities of impedance, such as the
damaged insulation and water infiltration. The first simple analyzed
topology is shown in Fig. 1. First, a network sample is set up in our
laboratory, and different types of fault are introduced on cable L3,
such as damaged insulation, water infiltration and hard fault. Their
photos are shown in Fig. 4. Then, the scattering parameters of each
fault network in the frequency domain ranging from 1MHz to 1.2 GHz
are measured. Finally, the TDR can be obtained by IFT, and will be
compared with the simulated results.

When a segment of length lF and width wF is chafed on a coaxial
cable, the chafed segment can be regarded as having a constant (lF
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(b)(a)

(d)(c)

Figure 5. The simulated and measured TDR at port 1. (a) Healthy
network. (b) Damaged insulation. (c) Water infiltration. (d) Hard
fault.

and wF -independent) impedance ZF [6], and ZF > Z0 (with Z0

is the characteristic impedance of coaxial cable). The theoretical
underpinnings and the numerical implementation of this approach are
presented in [22]. For the water infiltration (with salt), ZF is always
less than Z0; meanwhile, in terms of the hard faults (break point), ZF

is treated as infinite.
Figure 5 presents the simulated and measured results of TDR

response at the port 1. It is very clear that all the results are very
similar in terms of location and magnitude of the main peaks. The
existing error is mainly caused by the connector between VNA and
network.

It is worth to point out that, compared to the healthy network,
the soft faults only cause only small changes to the TDR curve (In fact,
the faults introduced in Fig. 4 are very grievous. For instance, plenty
of salt is added into the water for the infiltration). These changes are
always below the level of error shown in the plot, especially for the
complex network. Hence, it is difficult to detect the soft faults at the
port which is far away from the faulty point, such as port 1 in Fig. 4.
In this case, soft faults can be detected at the nearest port (in fact,
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it is the terminal where the fault happened), such as the port 3. The
fault point and the tested port are in the same cable, there is no device
between them. So the power of the reflected signal will be relatively
larger and can be detected by the instrument. The simulated and
measured TDR curves at port 3 are shown in Fig. 6.

It can be seen from the Fig. 6, changes caused by the fault can
be displayed in the TDR curves. In fact, this case is considered as the
fault location on single cable. Now, the SVM model is used to locate
soft faults at the nearest port. Soft faults with different impedance and
different location are introduced on the cable L3. Then thousands of
TDR curves at port 3 can be calculated by the State-transition matrix.
Some are shown in Fig. 7. Just like the “TDR1”, the soft fault is 5 m
away from port 3, and its impedance is 30 Ω.

Two SVMs can be designed to diagnose the soft faults: SVM1 is
to locate the fault; SVM2 is to estimate the impedance of fault. These
thousands of TDR curves are used to train the SVMs. In the plot,
the time interval ∆t chosen in the study is 0.2 ns. Our interesting
time range is from 0 to 32 ns, there are 160 points in the TDR curve
(i.e., (ti, Γi), i ∈ [1, 2, . . . , 160]). The input vector of the two SVMs is

(b)(a)

(d)(c)
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Figure 6. The simulated and measured TDR at port 3. (a) Healthy
network. (b) Damaged insulation. (c) Water infiltration. (d) Hard
fault.
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Figure 7. Simulated TDR curves with different fault locations and
impedances.

[Γ1, Γ2, . . . ,Γ160], the output of SVM1 is the index z (i.e., z = 102 for
“TDR1”), the output of SVM2 is the impedance R (i.e., R = 30Ω for
“TDR1”).

1000 samples included input datasets (TDR response) and output
datasets (fault location and impedance) have been created by the
aforementioned model, 800 random samples are used for training, 200
for the testing. Then hyperparameters of the two SVMs are obtained
by the leave-one-out cross-validation method (C = 1.3192, ε = 0.5,
and γ = 0.152 for SVM1; C = 6.964, ε = 0.75, and γ = 0.658 for
SVM2).

Once the training process is completed, 10 random samples from
the testing datasets are used to evaluate the capability of these
generated SVMs. It is worth to note that the estimated z should
be changed to the fault location as tz × v, where v is the velocity
of propagation. Fig. 8 shows the comparison between the actual and
simulated location and impedance of fault on the branch. Concerning
the predicting errors, the calculated MAE and rmse of fault locations
are 0.079 m and 0.088 m respectively. Because the range of fault
impedance is too wide, the mean relative error is chosen as metric,
and the calculated value is 11.5%. These results illustrate clearly the
good performance of SVM models to diagnose soft faults.

Although the generated SVMs exhibit a good performance in soft
fault diagnosis, they only detect faults at the nearest port, but not
the headmost port. How to diagnose and locate soft faults on complex
network at the headmost port, is a difficult but important issue, and
will be addressed in the future research. In this paper, we primarily
focus on the location of hard faults on complex network.
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(b)

(a)

Figure 8. (a) Actual and simulated fault locations. (b) Actual and
simulated fault impedance.

3.2. Location of Hard Faults

When a hard fault locates on a branch, comparing to the healthy
network, the topology of the faulty network does not change. The
difference is only the length of branch. In other term, for the location of
hard faults, It is only needed to estimate the later length of each branch
from the measured TDR trace, and reconstruct a network with new
configuration as the faulty network. Meanwhile, in most residential
areas, the topology of the cable distribution network is the same, the
difference is only the length of cable. In practice thousands of network
samples, which belong to the same topology but with different lengths
of branches, are used to train the SVM. After being trained correctly,
the SVM can estimate length of each cable and locate faults for the
network which belongs to the analyzed topology.

In order to get a clearer understanding of the SVM model, a more
complex topology of network shown in Fig. 9 is studied. The type of
the 2-way tap is “208”, the 2-way splitter is “203”.

To simplify, it is supposed that the hard faults only locate on
branches (L2, L3, L4 and L5), and the main cable are L1 = 20 m,
L6 = 10m. Different lengths are set to branches (the range is from 0
to 6 m), and then thousands of TDR curves can be obtained. According
to the number of varied branches, the number of SVMs is limited to
four. It is worth to point out that this network is double-symmetrical,
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i.e., L2-L3, and L4-L5. Hence, when the thousand TDR curves are
used to train the SVMs, a flag parameter is added to input data: for
SVMs of L2 and L3, if L2 ≥ L3, then Γflag = 1, otherwise Γflag = −1;
and, it is the same way for L4 and L5.

After training correctly, 5 samples are used to test the model, and
the results are shown in Fig. 10. The MAEs are 0.03 m, 0.04 m, 0.03 m,
0.04m, respectively. So it demonstrates that the SVM model also has
a decent ability to locate multiple faults for the complex network.

The five evaluated samples are from the testing datasets. Like the
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Figure 9. A topology of network with a tap and a splitter.
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Figure 10. Actual and simulated faults location. (a) Branch L2.
(b) Branch L3. (c) Branch L4. (d) Branch L5.
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training datasets, all of them are generated by the State-transition
matrix. Therefore, it is necessary for this SVM model to locate
faults from the measured TDR trace. A network which belongs to the
topology of network in Fig. 9 is set up in our laboratory, and two faults
are introduced on the branches L2 and L5. It is depicted in Fig. 11(a).
The measured TDR trace is shown in Fig. 11(b), and will be used to
validate the generated SVM.

As mentioned about, this is a double-symmetrical network, when
using the trained SVMs to reconstruct fault network, the added flag
parameter Γflag should be set. At first, supposing that L2 > L3 and
L4 > L5 in the faulty network, so that, the Γflag = 1 for SVMs
of L2 and L3, and it is the same way for SVMs of L4 and L5.
Then, the regressive results are obtained by the SVM: L2 = 4.58m,
L3 = 1.96m, L4 = 3.07 m and L5 = 1.95m. After that, the results
are combined with the original network to analyze our supposal. For
example, the original length of L2 is 2 m in the healthy network, L2

must be less than 2 m in faulty network, hence it can be inferred
that: L2 = 1.96m, L3 = 4.58m. Finally, the simulated lengths of
branches are L2 = 1.96m, L3 = 4.58m, L4 = 3.07m and L5 = 1.95m.
The predicting errors can be calculated that the MAE = 0.06m and
rmse = 0.06m. The existing error in this model is mainly caused
by three reasons. First, ambiguity in the velocity of propagation is
proportional to ambiguity in the location of the fault, and v may vary
with the ambiance, especially the temperature. Second, there is some
error in measuring the true lengths of cables. Third, the splitter and
tap will led to time delay, which is not considered in this model.

Figure 12 shows an actual distribution network for two buildings.
Each building has six floors and each floor has two users. This network
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Figure 11. (a) Cable network with two faults. (b) Measured TDR
response.
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is much more symmetry, to simplify, faults are only introduced on cable
L1, L3 and L5. The measured TDR response at port 0 is shown in
Fig. 13. After SVM is trained correctly, this TDR trace is used to
estimate the fault locations, and the results are shown in Fig. 14. The
predicting errors are MAE = 0.13m and rmse = 0.14m. The results
demonstrate that the proposed SVM model is also effective to locate
faults on actual complex network.

The SVM model can locate faults from the measured TDR trace.
But for the symmetrical network, especially the complex network, it
is still not clear which branch the fault lies on. In this case, more
information is required to determine the real configuration of the faulty
network, such as the original lengths of cables in the healthy network,
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Figure 13. The measured TDR of the network shown in Fig. 12.
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Figure 14. Actual and simulated faults location.

the state of all terminals or more TDR responses at other terminals.
Meanwhile, it should be pointed out that, the inputs of SVM are the
all points in TDR curve, for complex network, the number of inputs
may be very large. Although the SVM exhibits the major advantage
of input-dimension independence, it needs a large number of training
datasets. So in the future work, before using the SVM to solve the
inversion problem, the TDR trace should be analyzed at first, such
as feature extraction and principal component analysis, to reduce the
number of inputs.

4. CONCLUSION

Only need to know the topology of distribution network, a method,
allowing the faulty network to be reconstructed by estimating the
lengths of branches, is proposed in the paper. This method is based
on the State-transition matrix model and SVM. The state-transition
matrix can generate the TDR response at any terminals, and simulate
the frequency and impulse response between any two points. This is
helpful to better understand the channel behavior of complex cable
network. How to locate faults from the measured TDR trace is
the inversion problem and can be solved by the SVM model. The
training datasets required by SVM are created by the State-transition
matrix. Once the training process is completed, the formed SVM can
reconstruct the faulty network by finding the length of each branch.
Experimental results demonstrate that the SVM model has a good
capability to locate faults on complex network, especially for multiple-
fault network. When the TDR curve is measured at the terminal port,
this approach can diagnose the soft faults. Furthermore, this approach
can be exploited in embedded system. However, it should be pointed
out that, for the symmetrical network, it is still hard for this model
to determine which branch the fault lies on. Only knowing the TDR
curve at one port is not enough to reconstruct the faulty network. This
puzzle problem will be addressed in the future study.
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