Vol. 48
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-26
Electromagnetic Shielding Features in Lightweight PVDF-Aluminum Based Nanocomposites
By
Progress In Electromagnetics Research B, Vol. 48, 175-196, 2013
Abstract
Dependence of the electromagnetic shielding effectiveness on filler volume fraction has been investigated from attenuation upon reflection measurements over a broad frequency range in hybrids based on Poly(vinylidene fluoride)-Aluminum nanoparticles. The loss of reflectivity with relation to the incident radiation in these nanocomposites compared with the pristine polymeric matrix shows the maximum value for the sample with an aluminum content of 10% in volume. Furthermore, the morphological aspects of all the specimens as well as their thermal properties, viscoelastic behavior and dielectric response have been evaluated. The nanocomposite that incorporates an Al content of 10% in volume exhibits the best balance in properties including, in addition to its shielding behavior, its processability and mechanical performance.
Citation
Javier Arranz-Andres, Nuria Pulido-Gonzalez, Pilar Marín, Ana M. Aragon, and Maria L. Cerrada, "Electromagnetic Shielding Features in Lightweight PVDF-Aluminum Based Nanocomposites," Progress In Electromagnetics Research B, Vol. 48, 175-196, 2013.
doi:10.2528/PIERB12121109
References

1. Valente Jr., W., M. H. Amaral, and A. Raizer, "EMC management: How to compare electromagnetic environmental measurements and equipment immunity levels," Progress In Electromagnetics Research Letters, Vol. 18, 165-177, 2010.
doi:10.2528/PIERL10092011

2. Chung, D. D. L., "Materials for electromagnetic interference shielding," J. Mater. Eng. Perform., Vol. 9, 350-354, 2000.
doi:10.1361/105994900770346042

3. Afsar, M. N., J. R. Birch, R. N. Clarke, and G. W. Chantry, "Measurement of the properties of materials," Proceedings of the IEEE, Vol. 74, 183-199, 1986.
doi:10.1109/PROC.1986.13432

4. Knott, E. F., J. F. Shaffer, and M. T. Tuley, Radar Cross Section, Artech House, 2004.

5. Wu, G., X. Huang, Z. Dou, S. Chen, and L. Jiang, "Electromagnetic interfering shielding of aluminum alloy-cenospheres composite," Journal of Materials Science, Vol. 42, 2633-2636, 2007.
doi:10.1007/s10853-006-1347-2

6. Wu, G., X. G. Zhang, Z. Q. Song, and B. Liu, "Analysis on shielding performance of metallic rectangular cascaded enclosure with apertures," Progress In Electromagnetics Research Letters, Vol. 20, 185-195, 2011.

7. Lei, J. Z., C. H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905

8. Gorriti, A. G., P. Marin, D. Cortina, and A. Hernando, "Microwave attenuation with composite of copper microwires," Journal of Magnetism and Magnetic Materials, Vol. 322, 1505-1510, 2010.
doi:10.1016/j.jmmm.2009.07.085

9. Marin, P., D. Cortina, and A. Hernando, "Electromagnetic wave absorbing material based on magnetic microwires," IEEE Transactions on Magnetics, Vol. 44, 3934-3937, 2008.
doi:10.1109/TMAG.2008.2002472

10. Marin, P., D. Cortina, and A. Hernando, "High-frequency behavior of amorphous microwires and its applications," Journal of Magnetism and Magnetic Materials, 290-291, Part 2, 1597-1600, 2005.

11. Wang, Y. and X. Jing, "Intrinsically conducting polymers for electromagnetic interference shielding," Polymers for Advanced Technologies, Vol. 16, 344-351, 2005.
doi:10.1002/pat.589

12. Das, N. C., T. K. Chaki, D. Khastgir, and A. Chakraborty, "Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers," Journal of Applied Polymer Science, Vol. 80, 1601-1608, 2001.
doi:10.1002/app.1253

13. Morari, C., I. Balan, J. Pintea, E. Chitanu, and I. Iordache, "Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders," Progress In Electromagnetics Research M, Vol. 21, 93-104, 2011.
doi:10.2528/PIERM11080406

14. Koledintseva, M. Y., J. Drewniak, R. DuBroff, K. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410

15. Raj, C. D., G. S. Rao, P. V. Y. Jayasree, B. Srinu, and P. Lakshman, "Estimation of reflectivity and shielding effectiveness of three layered laminate electromagnetic shield at X-band," Progress In Electromagnetics Research B, Vol. 20, 205-223, 2010.
doi:10.2528/PIERB10030402

16. Jayasree, P. V. Y., V. S. S. N. Srinivasa Baba, B. Prabhakara Rao, and P. Lakshman, "Analysis of shielding effectiveness of single double and laminated shields for oblique incidence of EM waves," Progress In Electromagnetics Research B, Vol. 22, 187-202, 2010.
doi:10.2528/PIERB10051305

17. Danaei, M. M., H. Aliakbarian, M. Azarbadegan, and Y. Bairami, "Protection of car-size sensitive equipments using a shielding cover," Progress In Electromagnetics Research M, Vol. 7, 97-108, 2009.
doi:10.2528/PIERM09031910

18. Qureshi, A., A. Mergen, M. S. Eroglu, N. L. Singh, and A. Gulluoglu, "Dielectric properties of polymer composites filled with different metals," Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 45, 462-469, 2008.
doi:10.1080/10601320801977756

19. Teirikangas, M., J. Juuti, and H. Jantunen, "Organic-inorganic RF composites with enhanced permittivity by nanoparticle additions," Progress In Electromagnetics Research, Vol. 115, 147-157, 2011.

20. Arranz-Andres, J., E. Perez, and M. L. Cerrada, "Hybrids based on poly (vinylidene fluoride) and Cu nanoparticles: Characterization and EMI shielding," European Polymer Journal,, Vol. 48, 1160-1168, 2012.
doi:10.1016/j.eurpolymj.2012.04.006

21. Nalva, H. S., Ferroelectric Polymers, Marcel Dekker Inc., New York, 1955.

22. Nagai, M., K. Nakamura, H. Uehara, T. Kanamoto, Y. Takahashi, and T. Furukawa, "Enhanced electrical properties of highly oriented poly (vinylidene fluoride) films prepared by solid-state coextrusion," Journal of Polymer Science --- Part B: Polymer Physics, Vol. 37, 2549-2556, 1999.
doi:10.1002/(SICI)1099-0488(19990915)37:18<2549::AID-POLB1>3.0.CO;2-S

23. Strashilov, V. L., "Efficiency of poly (vinylidene fluoride) thin films for excitation of surface acoustic waves," Journal of Applied Physics, Vol. 88, 3582-3586, 2000.
doi:10.1063/1.1288226

24. Kepler, R. G. and R. A. Anderson, "Ferroelectric polymers," Advances in Physics, Vol. 41, 1-57, 1992.
doi:10.1080/00018739200101463

25. Kepler, R. G., Ferroelectric Polymers: Chemistry, Physics and Applications, Marcel Dekker, New York, 1995.

26. Tashiro, K., Ferroelectric Polymers: Chemistry, Physics and Applications, Marcel Dekker, New York, 1995.

27. Matsushige, K., "Pressure effect on phase transition in ferroelectic polymers," Phase Transitions, Vol. 18, 247-262, 1989.
doi:10.1080/01411598908206865

28. Scheinbeim, J., C. Nakafuku, B. A. Newman, and K. D. Pae, "High-pressure crystallization of poly (vinylidene fluoride)," Journal of Applied Physics, Vol. 50, 4399-4405, 1979.
doi:10.1063/1.326429

29. Wang, X. C. and Z. Liu, "A new computation of shielding effectiveness of electromagnetic radiation shielding fabric," Progress In Electromagnetics Research Letters, Vol. 33, 177-186, 2012.

30. Lucyszyn, S. and Y. Zhou, "Characterising room temperature THz metal shielding using the engineering approach," Progress In Electromagnetics Research, Vol. 103, 17-31, 2010.
doi:10.2528/PIER10030801

31. McCrum, N. G., B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, Dover, New York, 1991.

32. Nakagawa, K. and Y. Ishida, "Annealing effects in poly (vinylidene °uoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy," Journal of Polymer Science --- Part B: Polymer Physics, Vol. 11, 2153-2171, 1973.
doi:10.1002/pol.1973.180111107

33. Lovinger, A. J., Developments in Crystalline Polymers-I, Applied Science Publishers, London, 1982.

34. Xu, J. and C. P. Wong, "Low-loss percolative dielectric composite," Applied Physics Letters, Vol. 87, 2005.

35. Chanmal, C. V. and J. P. Jog, "Dielectric relaxations in PVDF/BaTiO3 nanocomposites," Express Polymer Letters, Vol. 2, 294-301, 2008.
doi:10.3144/expresspolymlett.2008.35

36. Linares, A., A. Nogales, D. R. Rueda, and T. A. Ezquerra, "Molecular dynamics in PVDF/PVA blends as revealed by dielectric loss spectroscopy," Journal of Polymer Science --- Part B: Polymer Physics, Vol. 45, 1653-1661, 2007.
doi:10.1002/polb.21210

37. Takahashi, Y. and K. Miyaji, "Long-range order parameters of form II of poly (vinylidene fluoride) and molecular motion in the I +- c relaxation," Macromolecules, Vol. 16, 1789-1792, 1983.
doi:10.1021/ma00245a019

38. Boyd, R. H., "Relaxation processes in crystalline polymers: Experimental behaviour --- A review," Polymer, Vol. 26, 323-347, 1985.
doi:10.1016/0032-3861(85)90192-2

39. Boyd, R. H., "Relaxation processes in crystalline polymers: Molecular interpretation --- A review," Polymer, Vol. 26, 1123-1133, 1985.
doi:10.1016/0032-3861(85)90240-X

40. Tian, L. Y., X. B. Huang, X. Z. Tang, and , "Study on morphology behavior of PVDF-based electrolytes," Journal of Applied Polymer Science, Vol. 92, 3839-3842, 2004.
doi:10.1002/app.20402

41. Kochervinskii, V. V., I. A. Malyshkina, G. V. Markin, N. D. Gavrilova, N. P. Bessonova, and , "Dielectric relaxation in vinylidene fluoride-hexafluoropropylene copolymers," Journal of Applied Polymer Science, Vol. 105, 1101-1117, 2007.
doi:10.1002/app.26145

42. Panwar, V., J. O. Park, S. H. Park, S. Kumar, and R. M. Mehra, "Electrical, dielectric, and electromagnetic shielding properties of polypropylene-graphite composites," Journal of Applied Polymer Science, Vol. 115, 1306-1314, 2010.
doi:10.1002/app.29702

43. Yano, S., "Dielectric relaxation and molecular motion in poly (vinylidene fluoride)," Journal of Polymer Science --- Part A-2: Polym. Chem., Vol. 8, 1057-1072, 1970.
doi:10.1002/pol.1970.160080704

44. Lovinger, A. J. and T. T. Wang, "Investigation of the properties of directionally solidified poly (vinylidene fluoride)," Polymer, Vol. 20, 725-732, 1979.
doi:10.1016/0032-3861(79)90247-7

45. O'Shea, M. L., C. Morterra, and M. J. D. Low, "Spectroscopic studies of carbons. XVII. Pyrolysis of polyvinylidene fluoride," Materials Chemistry and Physics, Vol. 26, 193-209, 1990.
doi:10.1016/0254-0584(90)90038-C

46. Zulfiqar, S., M. Zulfiqar, M. Rizvi, A. Munir, and I. C. McNeill, "Study of the thermal degradation of polychlorotrifluoroethylene, poly (vinylidene fluoride) and copolymers of chlorotrifluoroethy lene and vinylidene fluoride-," Polymer Degradation and Stability, Vol. 43, 423-430, 1994.
doi:10.1016/0141-3910(94)90015-9

47. Botelho, G., S. Lanceros-Mendez, A. M. Goncalves, V. Sencadas, and J. G. Rocha, "Relationship between processing conditions, defects and thermal degradation of poly (vinylidene fluoride) in the β-phase," Journal of Non-Crystalline Solids, Vol. 354, 72-78, 2008.
doi:10.1016/j.jnoncrysol.2007.07.012

48. Kang, D. J., K. Pal, D. S. Bang, and J. K. Kim, "Synergistic effect on crystalline structure of polyvinylidene fluoride nanocomposites with multiwalled carbon nanotube loading by a twin screw extruder," Journal of Applied Polymer Science, Vol. 121, 226-233, 2011.
doi:10.1002/app.33524