Vol. 37
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-01-13
Compact Mixed-Cross Coupled Bandpass Filter with Enhanced Frequency Selectivity
By
Progress In Electromagnetics Research Letters, Vol. 37, 73-82, 2013
Abstract
In this paper, a compact three-order mixed-cross coupled bandpass filter (BPF) with enhanced frequency selectivity is proposed. Multiple transmission zeros (TZs) can be obtained near the passband for high frequency selectivity by introducing mixed-cross coupling between the nonadjacent resonators. The frequency-dependent mixed-cross coupling matrix of the proposed filter is presented to explain the occurrence of the TZs caused by mixed-cross coupling. A new BPF centered at 2.7 GHz with 11.5% fractional bandwidth has been designed and fabricated to verify the validity of the proposed method. The measurement result shows four finite TZs in the stopband, located at 1.74 GHz with 52.16 dB rejection, 2.53 GHz with 24.67 dB rejection, 3.83 GHz with 47.52 dB rejection, and 7.75 GHz with 54.83 dB rejection, respectively. The circuit only occupies 6.2×7.6 mm2.
Citation
Xubo Wei, Peng Wang, and Yu Shi, "Compact Mixed-Cross Coupled Bandpass Filter with Enhanced Frequency Selectivity," Progress In Electromagnetics Research Letters, Vol. 37, 73-82, 2013.
doi:10.2528/PIERL12121102
References

1. Lu, J.-C., C.-K. Liao, and C.-Y. Chang, "Microstrip parallel-coupled filters with cascade trisection and quadruplet responses," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2101-2110, 2008.
doi:10.1109/TMTT.2008.2002226

2. Hong, J. S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microw. Theory Tech, Vol. 44, No. 12, 2099-2109, 1996.
doi:10.1109/22.543968

3. Liao, C. K. and C. Y. Chang, "Modified parallel-coupled filter with two independently controllable upper stopband transmission zeros," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 12, 841-843, 2005.
doi:10.1109/LMWC.2005.860017

4. Cai, L. Y., G. Zeng, H. C. Yang, and Y. Z. Cai, "Compact bandpass filter for RFID reader applications," Electronics Lett., Vol. 47, No. 7, 445-447, 2011.
doi:10.1049/el.2011.0275

5. Hong, J.-S., E. P. McErlean, and B. M. Karyamapudi, "A high-temperature superconducting filter for future mobile telecommunication systems," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 6, 1976-1981, 2005.
doi:10.1109/TMTT.2005.848840

6. Amari, S. and J. Bornemann, "Maximum number of finite transmission zeros of coupling resonator filters with source/load multi-resonator coupling and a given topology," Microwave Conference, 1175-1177, 2000.

7. Montejo-Garai, J. R., "Synthesis of N-even order symmetric filters with N transmission zeros by means of source-load cross coupling," Electron. Lett., Vol. 36, No. 3, 232-233, 2000.
doi:10.1049/el:20000242

8. Shaman, H. and J.-S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microw. Wirelss Compon. Lett., Vol. 17, No. 2, 121-123, 2007.
doi:10.1109/LMWC.2006.890335

9. Athukorala, L. and D. Budimir, "Compact filter configurations using concentric microstrip open-loop resonators," IEEE Microw. Wirelss Compon. Lett., Vol. 22, No. 5, 245-247, 2012.
doi:10.1109/LMWC.2012.2190268

10. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

11. Gomez-Garcia, R. and J. I. Alonso, "Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 8, 530-532, 2005.
doi:10.1109/LMWC.2005.852797

12. Gomez-Garcia, R., "High-rejection wideband signal-interference microstrip filters using rat-race couplers," Electron. Lett., Vol. 42, No. 20, 1162-1163, 2006.
doi:10.1049/el:20062039

13. Ma, K. X., J. G. Ma, K. S. Yeo, and M. A. Do, "A compact size coupling controllable filter with separate electric and coupling paths," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1113-1119, 2006.
doi:10.1109/TMTT.2005.864118

14. Chu, Q.-X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 431-439, 2008.
doi:10.1109/TMTT.2007.914642

15. Wei, X. B., Y. Shi, P. Wang, J. X. Liao, Z. Q. Xu, and B. C. Yang, "Design of compact, wide stopband bandpass filter using stepped impedance resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1095-1104, 2012.
doi:10.1080/09205071.2012.710534

16. Amari, S., U. Rosenberg, and J. Bornemann, "Adaptive synthesis and design of resonator filters with source/load-multi-resonator coupling," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 8, 1969-1978, 2002.
doi:10.1109/TMTT.2002.801348

17. Lin, S.-C., C.-H. Wang, and C. H. Chen, "Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 1, 137-146, 2007.
doi:10.1109/TMTT.2006.888579

18. Amari, S., "Synthesis of cross coupled resonator filters using an analytical gradient based optimization technique," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1559-1564, 2000.
doi:10.1109/22.869008

19. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 6, 312-314, 2012.
doi:10.1109/LMWC.2012.2197386

20. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619

21. Hsu, C.-L., C.-H. Yu, and J.-T. Kuo, "Control of transmission zero by mixed-coupling in a two-stage coupled-resonator filter," Proceedings of Asia-Paci¯c Microwave Conference, 1-4, 2007.
doi:10.1109/APMC.2007.4554879