Vol. 49
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-02-21
The Subgrid Modeling for Maxwell's Equations with Multiscale Isotropic Random Conductivity and Permittivity
By
Progress In Electromagnetics Research B, Vol. 49, 197-213, 2013
Abstract
The effective coefficients for Maxwell's equations in the frequency domain are calculated for a multiscale isotropic medium by using a subgrid modeling approach. The correlated fields of conductivity and permeability are approximated by Kolmogorov's multiplicative continuous cascades with a lognormal probability distribution. The wavelength is assumed to be large as compared with the scale of heterogeneities of the medium. The permittivity ε(x) and the electric conductivity σ(x) satisfy the condition σ(x)/(ωε(x)) < 1, where ω is the cyclic frequency. The theoretical results obtained in the paper are compared with the results from direct 3D numerical simulation.
Citation
Ekaterina Petrovna Kurochkina, and Olga Nikolaevna Soboleva, "The Subgrid Modeling for Maxwell's Equations with Multiscale Isotropic Random Conductivity and Permittivity," Progress In Electromagnetics Research B, Vol. 49, 197-213, 2013.
doi:10.2528/PIERB12120308
References

1. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, 2005.

2. Mikhailenko, B. G. and O. N. Soboleva, "Mathematical modeling of seismomagnetic effects arising in the seismic wave motion in Earthes's constant magnetic field," Applied Mathematics Letters, Vol. 10, 47-55, 1997.
doi:10.1016/S0893-9659(97)00033-5

3. Mastryukov, A. F. and B. G. Mikhilenko, "Numerical solution of Maxwell's equations for anisotropic media using the Laguerre transform," Russion Geology and Geophysics, Vol. 49, 621-627, 2008.
doi:10.1016/j.rgg.2007.12.011

4. Wellander, N., "Homogenization of the Maxwell equations," Application of Mathematics,, Vol. 46, No. 1, 29-51, 2001.
doi:10.1023/A:1013727504393

5. Jones, J. and B. Lee, "A multigrid method for variable coefficient Maxwell's equations," SIAM J. Sci. Comput., Vol. 27, No. 5, 1689-1708, 2006.
doi:10.1137/040608283

6. Dagan, G., "Higher-oder correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity Distribution," Transport in Porous Media, Vol. 12, 279-290, 1993.
doi:10.1007/BF00624462

7. Yukalov, V. I., "Self-semilar approximations for strongly interacting systems," Physica A, Vol. 167, 833-860, 1990.
doi:10.1016/0378-4371(90)90294-3

8. Yukalov, V. I. and S. Gluzman, "Self-semilar bootstrap of divergent series," Phys. Rev. E, Vol. 55, 6552-6570, 1997.
doi:10.1103/PhysRevE.55.6552

9. Gluzman, S. and D. Sornette, "Self-similar approximants of the permeability in heterogeneous porous media from moment equation expansions," Transport in Porous Media, Vol. 71, 75-97, 2008.
doi:10.1007/s11242-007-9112-9

10. Germano, M., P. Moin, W. Piomelly, and H. Cabot, "A dynamic subgrid scale eddy viscosity model," Phys. Fluids A, Vol. 3, 1760-1765, 1991.
doi:10.1063/1.857955

11. Germano, M. and P. Sagat, arge Eddy Simmulation for Incompressible Flow, Sprimger, Berlin Heidelberg, 1998.

12. Hoffman, J., "Dynamic subgrid modelling for time dependent convection-di®usion-reaction equations with fractal solutions," International Journal for Numerical Methods in Fluids, Vol. 40, No. 3-4, 583-592, 2002.
doi:10.1002/fld.304

13. Sahimi, M., "Flow phenomena in rocks: From continuum models, to fractals, percolation, cellular automata, and simulated annealing," Reviews of Modern Physics, Vol. 65, No. 4, 1393-1534, 1993.
doi:10.1103/RevModPhys.65.1393

14. Krylov, S. S. and V. A. Lyubchich, "The apparent resistivity scaling and fractal structure of an iron formation," Izvestiya Physics of the Solid Earth, Vol. 38, 1006-1012, 2002.

15. Bekele, A., H. W. Hudnall, J. J. Daigle, A. Prudente, and M. Wolcott, "Scale dependent variability of soil electrical conductivity by indirect measures of soil properties," Journal of Terramechanics, Vol. 42, 339-351, 2005.
doi:10.1016/j.jterra.2004.12.004

16. Kurochkina, E. P. and O. N. Soboleva, "Effective coefficients of quasi-steady Maxwell's equations with multiscale isotropic random conductivity," Physica A, Vol. 39, 231-244, 2011.
doi:10.1016/j.physa.2010.09.028

17. Kuz'min, G. A. and O. N. Soboleva, "Subgrid modeling of filtration in porous self-similar media," Journal Appl. Mech. Tech. Phys., Vol. 43, 583-592, 2002.
doi:10.1023/A:1016057832296

18. Kolmogorov, A. N., "A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number," Journal Fluid Mech., Vol. 13, No. 1, 82-85, 1962.
doi:10.1017/S0022112062000518

19. Gnedenko, B. V. and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, English Trans., K. L. Chung, Addison-Wesley, Cambridge , 1954.

20. Feller, W., An Introduction to Probability Theory and Its Applications, 3rd Ed., Vol. 1, Wiley, New York, 1968.

21. Koshljakov, N. S., M. M. Smirnov, and E. B. Gliner, Differential Equations of Mathematical Physics, Fizmatgiz, Moscow, 1962.

22. Chew, W., J. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood, 2001.

23. Ogorodnikov, V. A. and S. M. Prigarin, Numerical Modeling of Random Processes and Fields: Algorithms and Applications, VSP, Utrecht, 1996.

24. Lebedev, V. I., "Difference analogies of orthogonal decompositions of basic di®eretial operators and some boundary value problems," Journal Comut. Maths. Math. Phys., Vol. 3, No. 3, 449-465, 1964 (in Russia).

25. Davydycheva, S., V. Drushkin, and T. Habashy, "An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media," Geophysics, Vol. 68, No. 5, 1525-1530, 2003.
doi:10.1190/1.1620626

26. Modersitzki, J., G. Sleijpen, and H. van der Vorst, "Differences in the effects of rounding errors in Krylov solvers for symmetric indefinite linear systems," Matrix Anal. Appl., Vol. 22, No. 3, 726-751, 2000.