Vol. 28
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-30
The Currents Induced by a High-Frequency Wave Incident at a Small Angle to the Axis of Strongly Elongated Spheroid
By
Progress In Electromagnetics Research M, Vol. 28, 273-287, 2013
Abstract
Previously derived asymptotics for diffraction by strongly elongated body is generalized to the case of nonaxial incidence. By applying "parabolic" equation method the asymptotics of the field in the boundary layer near the surface is constructed. This asymptotics takes into account the rate of elongation of the body and is applicable both to not too much elongated objects, where it reduces to Fock formulae, and to very elongated bodies.
Citation
Ivan Viktorovitch Andronov, "The Currents Induced by a High-Frequency Wave Incident at a Small Angle to the Axis of Strongly Elongated Spheroid," Progress In Electromagnetics Research M, Vol. 28, 273-287, 2013.
doi:10.2528/PIERM12120102
References

1. Hong, S., "Asymptotic theory of electromagnetic and acoustic diffraction by smooth convex surfaces of variable curvature," J. Math. Physics, Vol. 8, No. 6, 1223, 1967.
doi:10.1063/1.1705339

2. Andronov, I. V. and D. Bouche, "Asymptotic of creeping waves on a strongly prolate body," Ann. Telecommunications, Vol. 49, No. 3-4, 205-210, 1994.

3. Andronov, I. V., "High-frequency asymptotics for diffraction by a strongly elongated body," Antennas and Wireless Propagation Letters, Vol. 8, 872, 2009.
doi:10.1109/LAWP.2009.2026498

4. Andronov, I. V., "High frequency asymptotics of electromagnetic field on a strongly elongated spheroid," PIERS Online , Vol. 5, No. 6, 536-540, 2009.

5. Andronov, I. V., D. P. Bouche, and M. Durufle, "High-frequency diffraction of plane electromagnetic wave by an elongated spheroid," IEEE Transactions on Antennas and Propag., Vol. 60, No. 11, 5286-5295, 2012.
doi:10.1109/TAP.2012.2207683

6. Fock, V. A., "The distribution of currents induced by a plane wave on the surface of a conductor," Journ. of Phys. of the U.S.S.R., Vol. 10, No. 2, 130, 1946.

7. Bowman, J. J., T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, North-Holland, 1969.

8. Kleshchev, A. A., "Scattering of sound by perfect spheroids in the limiting case of high frequencies," Akust. Zhurn., Vol. 19, No. 5, 699-704, 1973 (in Russian).

9. Sammelman, G. S., D. H. Trivett, and R. H. Hackman, "High-frequency scattering from rigid prolate spheroids," J. Acoust. Soc. Am., Vol. 83, 46-54, 1988.
doi:10.1121/1.396183

10. Voshchinnikov, N. V. and V. G. Farafonov, "Light scattering by an elongated particle: Spheroid versus infinite cylinder," Meas. Sci. Technol., Vol. 13, 249-255, 2002.
doi:10.1088/0957-0233/13/3/303

11. Kotsis, A. D. and J. A. Roumeliotis, "Electromagnetic scattering by a metallic spheroid using shape perturbation method," Progress In Electromagnetics Research, Vol. 67, 113-134, 2007.
doi:10.2528/PIER06080202

12. Komarov, I. V., L. I. Ponomarev, and S. Y. Slavyanov, Spheroidal and Coulomb Spheroidal Functions, Science, Moscow, 1976 (in Russian).

13. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964.

14. Andronov, I. V., "Diffraction of a plane wave incident at a small angle to the axis of a strongly elongated spheroid," Acoustical Physics, Vol. 58, No. 5, 521-529, 2012.
doi:10.1134/S1063771012030025

15. Thompson, I. J. and A. R. Barnett, "COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments," Computer Physics Communications, Vol. 36, 363-372, 1985.
doi:10.1016/0010-4655(85)90025-6

16. Sun, X., H. W. Wang, and H. Zhang, "Scattering of Gaussian beam by a spheroidal particle," Progress In Electromagnetics Research, Vol. 128, 539-555, 2012.

17. Fock, V. A., "Theory of diffraction by a paraboloid of revolution," Diffraction of Electromagnetic Waves by Some Bodies of Revolution, 5-56, Soviet Radio, Moscow, 1957.

18. Andronov, I. V. and D. Bouche, "Forward and backward waves in high-frequency diffraction by an elongated spheroid," Progress In Electromagnetics Research B, Vol. 29, 209-231, 2011.
doi:10.2528/PIERB11021805