
Progress In Electromagnetics Research M, Vol. 28, 273–287, 2013

THE CURRENTS INDUCED BY A HIGH-FREQUENCY
WAVE INCIDENT AT A SMALL ANGLE TO THE AXIS
OF STRONGLY ELONGATED SPHEROID

Ivan V. Andronov*

University of St. Petersburg, 3 Ulianovskaya Str. 198504, St. Peters-
burg, Russia

Abstract—Previously derived asymptotics for diffraction by strongly
elongated body is generalized to the case of nonaxial incidence. By
applying “parabolic” equation method the asymptotics of the field in
the boundary layer near the surface is constructed. This asymptotics
takes into account the rate of elongation of the body and is applicable
both to not too much elongated objects, where it reduces to Fock
formulae, and to very elongated bodies.

1. INTRODUCTION

Many advances in the theory of diffraction were due to the asymptotic
methods. Besides giving relatively simple formulae for the fields, they
provide considerable physical insight and understanding of diffraction
mechanisms. However, the usual asymptotic approach fails in the case
of a body with large transverse curvature 1/ρt. For an ordinary body
1/ρt is of order of curvature 1/ρ of the geodesics, i.e., ρt/ρ = O(1),
and ρt does not manifest itself in the leading order approximation.
Correction terms [1] show that on surfaces with larger transverse
curvature TM creeping waves become less attenuated. To appear in
the principal order term of the asymptotics, the transverse curvature
should be large in such a way that ρ/ρt = O((kρ)1/3), where
k is the wave number. This case was called in [2] the case of
moderately elongated body. In that case the effect of transverse
curvature can be described by introducing effective impedance in
the boundary condition. If the transverse curvature is so large that
ρ/ρt = O((kρ)2/3), which is the case of strongly elongated body in
the terminology of [2], the approach with effective impedance does not
work and the asymptotics of creeping waves completely changes.
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Recent progress in the analysis of wave effects in presence of
elongated bodies is reported in [3–5]. In these papers the new
asymptotic procedure is developed for the description of wave processes
in Fock domain on a strongly elongated surface. This procedure
follows the usual “parabolic” equation approach of [6], however, the
supposition that ρ/ρt = O((kρ)2/3) modifies the results. In particular
the surface is approximated not by a circular cylinder as in the usual
case of Fock asymptotics, but by the spheroid with appropriately
chosen semiaxes. This results in the replacement of Airy functions
in Fock asymptotics with Whittaker functions. The leading order
term is expressed in the form of inverse Mellin transform. The
transformant crucially depends on the parameter χ = kρ

3/2
t ρ−1/2 which

characterizes the rate of elongation of the body. When χ → +∞
the asymptotics reduces to Fock formula. Careful checking with test
examples computed numerically by M. Duruflé shows [5] that the new
asymptotics gives a very good approximation for the induced current
on the surface in a wide range of values of parameter χ.

It is worth noting that diffraction and scattering by prolate
spheroids are of continuous interest. Most work relies on the use
of prolate spheroidal coordinates (summary of results can be found
in [7]). Spheroidal functions are not easy to compute especially in
the case of high frequencies when they contain the large parameter
kp, where p is the focal distance. Another difficulty of high-frequency
problems is in the large number of terms that should be summed up.
Kleshchev [8] and Sammelman et al. [9] have examined high-frequency
acoustic scattering from prolate spheroids and reduced the number of
terms from O((kp)2) to O(kp). Elongated spheroids with large aspect
ratio of semiaxes b/a posed another difficulty and did not allow to take
b/a more than 10 until Voshchinnikov and Farafonov [10] used Jaffé
expansions.

Our asymptotic solution does not require extensive computations
and is most effective when both the frequency and the aspect ratio
b/a are large. However the results of [3–5] are restricted to axially
symmetric problems, that is to the case when the incident plane wave
runs along the axis of the spheroid. In this paper we generalize the
approach to the case of skew incidence. The resulting formulae are
relatively simple and may be used as a simple solution. We emphasize
that efforts for the construction of simple solutions are undertaken by
many authors, mention already cited Ref. [10] where very elongated
spheroids are substituted with infinite cylinders and Ref. [11] where
perturbation technique is used to deal with spheroids having aspect
ratio close to one.

The paper is organized as follows. In Section 1 we present main



Progress In Electromagnetics Research M, Vol. 28, 2013 275

= -0 9

=
-0

.5

=
0

=
0
.5

= 0.9
η

η

η

η

η

0-p p

z

= constξ

=ξ ξ
0

ϑ

Figure 1. Geometry of the problem.

steps of the asymptotic procedure and introduce the general form of
the expression for the electromagnetic field in the boundary layer near
the surface of strongly elongated spheroid. This general form contains
unknown amplitudes related to the incident and reflected waves. In
Section 2 we consider plane wave incident on the spheroid at an angle
to its axis. Here we formulate assumptions on the smallness of the
incident angle. We find amplitudes corresponding to the incident wave
in the general formula for the field in the boundary layer. Since
the representation of the incident wave is constructed, amplitudes
of reflected waves can be easily found. This is done in Section 3.
Finally by setting the observation point on surface we find the induced
current. Results of computations are presented in Section 4 where
we discuss some effects that are specific for diffraction by strongly
elongated bodies.

2. PROBLEM FORMULATION AND MAIN EQUATIONS

Consider a strongly elongated perfectly conducting convex body of
revolution (see Fig. 1). Let a stationary of frequency ω plane
electromagnetic wave be incident at some angle ϑ to the axis of the
body. This wave induces some current on the surface. Our goal is
to find such a high-frequency asymptotic formula for the current that
takes into account the rate of elongation of the body.

Like in [4, 5] let us approximate the surface with the spheroid
having the same radii of curvature at the light-shadow boundary as the
body under consideration. The semiaxes of this spheroid are defined
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from the formulae

ρ =
b2

a
, ρt = a.

Let the Cartesian coordinate system be chosen such that z axis
coincides with the axis of spheroid, z be equal to 0 in its center, and
the plane of incidence coincides with the plane y = 0. We shall also use
cylindrical coordinates (r, ϕ, z), which we introduce by the formulae

x = r cosϕ, y = r sinϕ,

and spheroidal coordinates (ξ, η, ϕ)

r = p
√

ξ2 − 1
√

1− η2, z = pξη.

The focal distance p is determined by the semiaxes a and b and for
strongly elongated spheroid can be represented by the series in inverse
powers of large parameter kb, which is our main asymptotic parameter.
We have

p =
√

b2 − a2 = b− a2

2b2
+ . . . = b− χ

2
1
kb

+ . . .

In order to symmetrize Maxwell equations we introduce vectors E
and H, where E is electric vector divided by characteristic impedance
of the space

√
µ/ε and H is magnetic vector. Under the assumption

of time dependence in the form e−iωt Maxwell equations reduce to

curl E = ikH, curl H = −ikE,

where k = ω
√

εµ is the wave number.
We shall search for the solution of Maxwell equations in the

form of Fourier series by ϕ. For the part of electromagnetic field
which depends on the angle ϕ by means of the multiplier ei`ϕ one
can express components of E and H via angular components Eϕ and
Hϕ. Functions Eϕ(ξ, η) and Hϕ(ξ, η) are solutions of a system of
second order differential equations. (These are the usual equations in
spheroidal coordinates [12], and they allow variables separation only
in the case ` = 0.)

In the standard way of “parabolic” equation technique we search
for the solution in the form of a quickly oscillating multiplier and
more slowly varying attenuation function. Taking into account that
the spheroid is strongly elongated we choose the quick multiplier as
eikbη. This choice is good, however, only in the middle part of the
spheroid and we expect that the asymptotic formula may be not valid
near the ends of spheroid. Further we scale the radial coordinate ξ.
That is we introduce new variable τ by the formula

ξ = 1 +
χ

2kb
τ.
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The τ coordinate plays the role of stretched normal to the surface. It
can be checked that the choice of the scale is consistent with the usual
scaling of normal coordinate by (kρ)2/3. On the axis of the spheroid
τ = 0 and on the surface τ = 1.

We represent the attenuation functions in the form of asymptotic
series by inverse semi-integer powers of the large parameter kb. At
the leading order attenuation functions satisfy the system of parabolic
equations. Introducing new unknowns P` and Q`, such that

Eϕ = exp (ikbη + i`ϕ)
{

P`(τ, η) + Q`(τ, η)
}

, (1)

Hϕ = exp
(

ikbη + i`ϕ− iπ

2

){
P`(τ, η)−Q`(τ, η)

}
, (2)

we reduce this system to two independent parabolic equations

L`−1P` = 0, L`+1Q` = 0, (3)

where

Ln = τ
∂2

∂τ2
+

∂

∂τ
+

iχ

2
(
1− η2

) ∂

∂η
+

χ2τ

4
−n2

4τ
−χ2

4
(
1− η2

)− iχη

2
. (4)

The boundary conditions on the surface of perfectly conducting
spheroid reduce to

P`(1, η) + Q`(1, η) = 0,

(
∂

∂τ
+

1
2

)
(P`(1, η)−Q`(1, η)) = 0. (5)

If we subtract the incident wave from the total field, the remainder,
which we call the secondary field, is subject to the radiation conditions.
These conditions mean that for large τ the secondary field represents
waves running to infinity.

So, for every Fourier harmonics P`, Q` at the leading order by
kb we have got the boundary value problem (3), (5). For smaller
order corrections the boundary value problems will be with the same
operators in the left-hand sides, but in the right-hand sides instead of
zeros, there will be some expressions depending on the principal order
terms. The “parabolic” equation methods allows the asymptotics to
be constructed up to any order, but we restrict our analysis to the
principal order approximation only. That is, our goal is to find such a
solution of the above boundary-value problem which is the sum of the
given incident plane wave and the secondary field. And the secondary
field should satisfy radiation conditions.

First we derive the general representation for the solution.
Equation (3) allows variables separation. General solution of the
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equation LnUn = 0 can be written as the integral by the parameter of
variables separation

Un =
exp(−iχη/2)√

τ
√

1− η2

∫
Ω(s)

(
1− η

1 + η

)s

Fs, n/2(−iχτ)ds. (6)

The path of integration and function Ω(s) are arbitrary, except that
we require convergence of the integral. Function Fs, n/2(x) in (6) is a
solution of Whittaker equation [13]

d2F

dx2
+

(
−1

4
+

s

x
+

1− n2

4x2

)
F = 0. (7)

Standard solutions of Equation (7) are Whittaker functions
Ms,n/2(x) and Ws,n/2(x). The first is regular at x = 0 and we choose
this function in the expression (6) for the incident field, because the
incident field can be also considered in the interior of spheroid and it
is regular there up to the axis. Asymptotics

Ws,n/2(t) ∼ tse−t/2, |t| → +∞
of another solution shows that Un satisfies the radiation condition if we
choose F = W in (6). Therefore we set F = W in the representation
of the secondary field.

3. REPRESENTATION OF THE INCIDENT FIELD IN
THE BOUNDARY LAYER

Arbitrarily polarized plane wave can be represented as the sum of TE
and TM waves. We shall consider these waves separately. In TE wave
we have

~ETE = exp((ikz cosϑ + ikx sinϑ)~ey,

~HTE = exp((ikz cosϑ + ikx sinϑ) {− cosϑ~ex + sin ϑ~ez} ,

where ~ex, ~ey and ~ez are unit vectors in Cartesian coordinates.
In cylindrical coordinates (r, z, ϕ) we get

ETE
ϕ = eikz cos ϑ

{
iJ1(kr sinϑ)

+
∞∑

n=1

in−1
(
Jn−1(kr sinϑ)− Jn+1(kr sinϑ)

)
cos(nϕ)

}
,

HTE
ϕ = eikz cos ϑ cosϑ

∞∑

n=1

in−1
(
Jn−1(kr sinϑ)+Jn+1(kr sinϑ)

)
sin(nϕ).
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In order to rewrite these formulae in the form of representation (6) we
decompose the argument of the exponential by inverse powers of the
large parameter

√
kb and neglect vanishing at kb →∞ terms,

kz cosϑ ≈ kbη +
η

2
(
χ(τ − 1)− β2

)
, β =

√
kb ϑ.

Further, we assume the incident angle ϑ to be small, so that β = O(1).
Each Fourier component of the incident field is a solution of the

Equation (3) and, therefore, can be represented in the form (6). In
order to find the amplitudes Ω` in these representations one can equate
both formulae for the solution at some fixed τ . This gives a system
of integral equations. The left-hand sides of these equations can be
identified with inverse Mellin transform. Therefore solution of these
equations can be written explicitly. These calculations were done
in [14], and we can use the result

exp
(
i
η

2
(
ν − β2

))
J`

(√
1− η2

√
νβ

)

=
1
π

1√
1− η2

√
νβ

+∞∫

−∞

(
1− η

1 + η

)iλ

Miλ,`/2(iβ
2)Ω`(λ)Miλ,`/2(−iν)dλ,

where
Ω` =

Γ(`/2 + 1/2 + iλ)Γ(`/2 + 1/2− iλ)
Γ2(` + 1)

.

Because of this formula we choose the path of integration in (6) to go
along the imaginary axis, and change the integration variable s = iλ.
To write the formulae in a more compact form we introduce the
notation

U`[R, F ] =
e−iχη/2

π
√

1− η2√χτβ

+∞∫

−∞

(
1− η

1 + η

)iλ

×Ω`(λ)R(λ)Miλ,`/2

(
iβ2

)
Fiλ,`/2(−iχτ)dλ

where dummy parameters R and F will be substituted with particular
functions. In the formulae for the incident wave we set R = 1 and
F = M . So, for TE incident wave we can write the representation

E(i)
ϕ =eikbη

{
iU1[1,M ] +

∞∑

n=1

in−1
(
Un−1[1,M ]− Un+1[1,M ]

)
cos(nϕ)

}
,

H(i)
ϕ =eikbη

∞∑

n=1

in−1
(
Un−1[1,M ] + Un+1[1,M ]

)
sin(nϕ).
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Analogous derivations for TM wave result in a similar formula
with Eϕ replaced with Hϕ and Hϕ replaced with −Eϕ which is the
consequence of the natural symmetry of Maxwell equations.

4. THE TOTAL FIELD AND INDUCED CURRENTS

For the representation of the secondary field we choose the same path of
integration and, as explained above, use Whittaker function W . That
is, we search the asymptotics of the secondary TE field in the form

E(s)
ϕ =eikbη

{
iU1[R0,W ]+

∞∑

n=1

in−1
(
Un−1[Rn,W ]−Un+1[Tn,W ]

)
cos(nϕ)

}
,

H(s)
ϕ =eikbη

∞∑

n=1

in−1
(
Un−1[Rn,W ] + Un+1[Tn,W ]

)
sin(nϕ)

with additionally introduced subintegral multipliers R`(λ) and T`(λ).
These multipliers play the role of reflection coefficients and can be
found when satisfying the boundary conditions (5).

Trigonometric functions are linear independent, therefore each
Fourier harmonics should satisfy the boundary conditions separately.
When substituting representations for the incident and secondary fields
in the boundary conditions we get integral equations. For n = 0 we
get one equation (

U1[1,M ] + U1[R0, M ]
)∣∣∣

τ=1
= 0,

and for n > 0 we get systems, consisting of two equations



(
Un−1[1,M ]− Un+1[1,M ] + Un−1[Rn,W ]− Un+1[Tn,W ]

)∣∣∣
τ=1

= 0,
(
Un−1[1, Ṁ ] + Un+1[1, Ṁ ] + Un−1[Rn, Ẇ ] + Un+1[Tn, Ẇ ]

)∣∣∣
τ=1

= 0.

Here and below dot denotes derivative of a function.
The integral operators in these equations can be reduced to Mellin

transform. Due to uniqueness of the inversion we can equate to zero
the subintegral expressions. For R0 we find

R0 = −Miλ,1/2(−iχ)
Wiλ,1/2(−iχ)

.

For other reflection coefficients we get the following system of equations



RnWiλ,(n−1)/2(−iχ)− TnCn(λ, χ)Wiλ,(n+1)/2(−iχ)
= −Miλ,(n−1)/2(−iχ) + Cn(λ, χ)Miλ,(n+1)/2(−iχ),

RnẆiλ,(n−1)/2(−iχ) + TnCn(λ, χ)Ẇiλ,(n+1)/2(−iχ)

= −Ṁiλ,(n−1)/2(−iχ)− Cn(λ, χ)Ṁiλ,(n+1)/2(−iχ),
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where

Cn =
n2 + 4λ

4n2(n + 1)2
Miλ,(n+1)/2(−iχ)
Miλ,(n−1)/2(−iχ)

.

Solving this system in view of formula

Ṁiλ,`Wiλ,` −Miλ,`Ẇiλ,` =
Γ(1 + 2`)

Γ(1/2 + `− iλ)
for the wronskian of Whittaker functions, we get

Rn =− 1
Zn

(
Miλ,(n−1)/2(−iχ)Ẇiλ,(n+1)/2(−iχ)

+Ṁiλ,(n−1)/2(−iχ)Wiλ,(n+1)/2(−iχ) +
CnΓ(n + 2)

Γ(n/2 + 1− iλ)

)
, (8)

Tn =− 1
Zn

(
Wiλ,(n−1)/2(−iχ)Ṁiλ,(n+1)/2(−iχ)

+Ẇiλ,(n−1)/2(−iχ)Miλ,(n+1)/2(−iχ) +
Γ(n)

CnΓ(n/2− iλ)

)
, (9)

where

Zn = Wiλ,(n−1)/2(−iχ)Ẇiλ,(n+1)/2(−iχ)

+Ẇiλ,(n−1)/2(−iχ)Wiλ,(n+1)/2(−iχ).

Substituting these expressions to the formula for Hϕ and letting
τ = 1, we find the induced current. It can be expressed as follows

J = eikbηATE(η, χ, ϕ), (10)

where

ATE(η, χ, ϕ) =− 2
π

e−iχη/2

√
1−η2√χβ

+∞∫

−∞

(
1−η

1+η

)iλ ∞∑

n=1

in−1 sin(nϕ)
(n + 1)!Zn

×
(
Γ(n/2 + 1 + iλ)Miλ,(n+1)/2(iβ

2)Wiλ,(n−1)/2(−iχ)

+n(n+1)Γ(n/2+iλ)Miλ,(n−1)/2(iβ
2)Wiλ,(n+1)/2(−iχ)

)
dλ

It is also convenient to represent the special function ATE in terms
of Coulomb wave functions F and H+ [13]. Using formulae

Miλ,(n+1)/2(iβ
2)=

2ieiπn/4+πλ/2Γ(n + 2)√
Γ(n/2 + 1 + iλ)Γ(n/2 + 1− iλ)

Fn
2

(
λ,

β2

2

)
,

Wiλ,(n−1)/2(−iχ)=−ieiπn/4+πλ/2

√
Γ(n/2 + iλ)
Γ(n/2− iλ)

H+
n
2
−1

(
−λ,

χ

2

)
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we get

ATE =− 8
π

e−iχη/2

√
1−η2√χβ

+∞∫

−∞

(
1− η

1 + η

)iλ ∞∑

n=1

in sin(nϕ)

×
Fn

2

(
λ, β2

2

)
H+

n
2
−1

(−λ, χ
2

)
+Fn

2
−1

(
λ, β2

2

)
H+

n
2

(−λ, χ
2

)

H+
n
2
−1

(−λ, χ
2

)
Ḣ+

n
2

(−λ, χ
2

)
+Ḣ+

n
2
−1

(−λ, χ
2

)
H+

n
2

(−λ, χ
2

)dλ.(11)

The derivations for the case of TM polarization are similar.
Representation of the incident wave as was already mentioned can
be obtained according to the symmetry principle by interchanging
(Eϕ, Hϕ) components of TE wave with (Hϕ, −Eϕ) components of TM
wave. The same symmetry is inherited in the representation of the
secondary field. The reflection coefficient RTM

0 is given by the formula

RTM
0 = −Ṁiλ,1/2(−iχ)

Ẇiλ,1/2(−iχ)
.

For the other reflection coefficients one gets formulae (8) and (9), where
Cn should be taken with the minus sign. In the resulting formula (10)
for the induced current the special function ATE is replaced with

ATM(η,χ,ϕ)=
8
π

e−iχη/2

√
1−η2√χβ

+∞∫

−∞

(
1−η

1+η

)iλ
{
1
2

F0

(
λ,β

2

2

)

Ḣ+
0

(−λ,χ
2

)+
∞∑

n=1

in cos(nϕ)

×
Fn

2

(
λ, β2

2

)
H+

n
2
−1

(−λ, χ
2

)− Fn
2
−1

(
λ, β2

2

)
H+

n
2

(−λ, χ
2

)

H+
n
2
−1

(−λ, χ
2

)
Ḣ+

n
2

(−λ, χ
2

)
+ Ḣ+

n
2
−1

(−λ, χ
2

)
H+

n
2

(−λ, χ
2

)
}

dλ. (12)

It is worth noting that in the case of axial incidence one should
consider the limit as β → 0. Only Coulomb wave function F−1

2
gives

nonzero contribution and special functions ATE and ATM simplify to

ATE(η, χ, 0) = A(η, χ) sinϕ, ATM(η, χ, 0) = A(η, χ) cos ϕ, (13)
where A(η, χ) is the special function from Refs. [3–5]

A(η, χ) =− 4√
π

e−iχη/2

√
χ
√

1− η2

+∞∫

−∞

(
1− η

1 + η

)iλ e−πλ/2

√
cosh(πλ)

×
H+

1/2

(−λ, χ
2

)

H+
− 1

2

(−λ, χ
2

)
Ḣ+

1
2

(−λ,χ2
)
+Ḣ+

− 1
2

(−λ,χ2
)
H+

1
2

(−λ,χ
2

)dλ.

As shown in [5] when χ → +∞ function A reduces to Fock function.
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5. EFFECT OF ELONGATION AND ANGLE OF
INCIDENCE

Formulae (11), (12) are not difficult for computations due to the
program developed in [15] for Coulomb wave functions. The
subintegral expression rapidly decreases at infinity and only a finite
interval of λ contributes to the integrals. However when the elongation
parameter χ or the scaled angle β increase the interval becomes larger.
For all the results presented below we choose it as [−5−β2/2, 5+χ/2].

As it was already mentioned for axially incident wave its
polarization ϕ0 manifests itself only by the multiplier cos(ϕ−ϕ0). For
skew incidence distributions of induced current differ more essentially.
Consider first the case of TE polarization. Fig. 2 presents current
distributions on the bodies characterized by χ = 10 and χ = 1. Solid
line corresponds to axial incidence, doted line is for the incidence at
β = 0.5 and dashed line for β = 1. We present currents in sections
at angles ϕ = 90◦ (curves No. 1), where the current is maximal and
almost do not depend on the angle of incidence both for not so much
elongated and for very much elongated bodies. This independence of
the current on the angle of incidence is an expected result because
the position of the geometric shadow boundary in this section remains
at η = 0 for any angle of incidence. The maximal shift of the light-
shadow boundary takes place in the section corresponding to ϕ = 0◦
and ϕ = 180◦, however the current is equal to zero at this section.
Curves No. 2 on Fig. 2 present currents at the angle ϕ = 45◦, while
curves No. 3 correspond to ϕ = 15◦. These sections lie on the more
shadowed side of the body and the light-shadow boundary in these
sections shifts to negative values of η. We see that when β increases
the current decreases on the body with χ = 10, except for a small
domain near the shadowed end of spheroid. This domain is reached
by creeping waves that are excited at the opposite side which appears
more illuminated. On ordinary bodies creeping waves attenuate much
faster when in the case of strongly elongated body, and this effect is
not seen. For very much elongated body characterized by χ = 1, the
current increases along the whole spheroid (see curves No. 2 and No. 3
on Fig. 2(b)).

For TM wave incidence the current distributions are different.
Fig. 3 presents currents on the spheroid with χ = 10. Fig. 4 presents
analogous results for the body with χ = 1. Compared to the case of
TE polarization, the influence of the incidence angle is more noticeable.
So, in the section ϕ = 90◦ where the light-shadow boundary remains
at η = 0 for any β the current essentially depends on β. For axial
incidence the current is zero in this section, but already for β = 0.1
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Figure 2. The currents on spheroid with (a) χ = 10 and (b) χ = 1
for TE wave incident at β = 0 (solid lines), β = 0.5 (dotted lines) and
β = 1 (dashed lines) in sections ϕ = 90◦ (curves 1), ϕ = 45◦ (curves
2) and ϕ = 15◦ (curves 3).
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Figure 3. The currents on the surface of strongly elongated body with
χ = 10 for TM wave incidence at angles β = 0 (solid lines), β = 0.1
(doted lines), β = 0.5 (dashed lines) and β = 1 (dash-dotted lines) at
sections ϕ = 0◦ (curves 1) and ϕ = 45◦ (curves 2), ϕ = 90◦ (curves 3),
ϕ = 135◦ (curves 4) and ϕ = 180◦ (curves 5).

the current has a significant amplitude. The effect is greater, the more
elongated the body is. In other sections on the less illuminated side,
the current decreases and in the sections on the more illuminated side
it increases.

As can be seen from Figs. 2(b) and 4, for small values of χ special
functions ATE and ATM infinitely grow when η → +1. The current
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Figure 4. Same as on Fig. 3, but for χ = 1.

increases near the shadowed end of the body due to focussing, however
it remains finite. That means that the asymptotic formula (10) is not
valid in the domain where η is close to one. Generally speaking it can
give wrong results in that domain (as well in a vicinity of illuminated
ending) not only for bodies with small χ, but this is not so noticeable.

6. CONCLUSION

We have derived a simple asymptotic formula for the currents on the
surface of strongly elongated body induced by a high frequency plane
wave incident at a small angle to the axis. The currents are given
by special functions that depend on the point on the surface and
two parameters. One parameter χ = ka2/b characterizes the rate
of elongation. The other parameter β =

√
kbϑ is the scaled angle of

incidence. For β = 0 the formulae contain ambiguity and computations
are not possible. However reducing this ambiguity yields previously
derived formulae for the axial incidence.

Numerical results computed according to these new asymptotics
are in agreement with previous computations for axial incidence. They
also show that the induced currents are more dependent on the angle
of incidence for TM polarization and for more elongated bodies.

It is worth noting that the approach allows other types of incident
wave to be considered as well. For example it is possible to study
spherical waves diffraction, or very popular diffraction of Gaussian
beams as in [16].

We note also that by matching with exact solution of diffraction by
a paraboloid [17] in the same way as in [18] one can obtain the currents
of backward wave that is formed of creeping waves that encircle the
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shadowed ending of the body.
We have studied the diffraction field only in a boundary layer in

a small vicinity of the surface. However if one knows the currents on
the surface, the field in an arbitrary point can be expressed by Green’s
formula in the form of the integral over the surface.
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