Vol. 39
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-04-01
Electrostatics of a Nanowire Including Nonlocal Effects
By
Progress In Electromagnetics Research Letters, Vol. 39, 27-36, 2013
Abstract
We develop a method for calculating transverse static polarizability (per unit length) of a bulk nanowire by taking in to account the temporal and spatial dispersion. To describe these phenomena, we developed analytical theory based on local random-phase approximation and plasmon pole approximation. Our theory is very general in the sense that it can be applied to any material which can be characterized by a bulk dielectric function of the form ε(w,k). The theory is applied to calculate the transverse static polarizability of dielectric nanowire.
Citation
Prabath Hewageegana, "Electrostatics of a Nanowire Including Nonlocal Effects," Progress In Electromagnetics Research Letters, Vol. 39, 27-36, 2013.
doi:10.2528/PIERL12113004
References

1. Dasgupta, B. B. and R. Fuchs, "Polarizability of a small sphere including nonlocal effects," Phys. Rev. B, Vol. 24, 554, 1981.
doi:10.1103/PhysRevB.24.554

2. Rojas, R., F. Claro, and R. Fuchs, "Nonlocal response of a small coated sphere," Phys. Rev. B, Vol. 37, No. 6799, 1988.

3. Scholl, J., A. Koh, and J. Dionne, "Quantum plasmon resonances of individual metallic nanoparticles," Nature, Vol. 483, No. 421, 2012.

4. Abajo, F. J. G., "Nonlocal effects in the plasmons of strongly nteracting nanoparticles, dimers, and waveguides," Phys. Chem. C, Vol. 112, 17983, 2008.
doi:10.1021/jp807345h

5. Jung, J. and T. Pedersen, "Polarizability of nanowires at surfaces: exact solution for general geometry," Opt. Express, Vol. 20, 3663, 2012.
doi:10.1364/OE.20.003663

6. Aizpurua, J. and A. Rivacoba, "Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams," Phys. Rev. B, Vol. 78, 035404, 2008.
doi:10.1103/PhysRevB.78.035404

7. Ruppin, R., "Extinction properties of thin metallic nanowires," Opt. Comm., Vol. 190, 205, 2001.
doi:10.1016/S0030-4018(01)01063-X

8. Venermo, J. and A. Sihvola, "Dielectric polarizability of circular cylinder," J. Electrostatics, Vol. 63, 101, 2005.
doi:10.1016/j.elstat.2004.09.001

9. Krcmar, M., W. M. Saslow, and A. Zangwill, "Electrostatics of conducting nanocylinders," J. Appl. Phys., Vol. 93, 3495, 2003.
doi:10.1063/1.1540712

10. Lindhard, L., Dan. Mat. Phy. Medd., Vol. 28, 1, 1954.

11. Mahan, G. D., Many-Particle Physics, Plenum, 1990.
doi:10.1007/978-1-4613-1469-1_1

12. Liftshitz, E. M. and L. P. Pitaevskii, Physical Kinetics, Butterworth-Heinemann, 1997.

13. Hedin, L., B. I. Lundqvist, and S. Lundqvist, "New structure in the single-particle spectrum of an electron gas," Solid State Commun., Vol. 5, 237, 1967.
doi:10.1016/0038-1098(67)90264-5

14. Ritchie, H. and A. L. Marusak, "The surface plasmon dispersion relation for an electron gas," Surf. Sci., Vol. 4, 234, 1966.
doi:10.1016/0039-6028(66)90003-3

15. Johnson, L. and R. P. Rimbey, "Aspects of spatial dispersion in the optical properties of a vacuum-dielectric interface," Phys. Rev. B, Vol. 14, 2398, 1976.
doi:10.1103/PhysRevB.14.2398

16. Echenique, M., R. H. Ritchie, N. Barbern, and J. Inkson, "Semiclassical image potential at a solid surface," Phys. Rev. B, Vol. 23, 6486, 1981.
doi:10.1103/PhysRevB.23.6486

17. Fuchs, R. and R. G. Barrera, "Dynamical response of a dipole near the surface of a nonlocal metal," Phys. Rev. B, Vol. 24, 2940, 1981.
doi:10.1103/PhysRevB.24.2940

18. Li, K. and W.-Y. Pan, "Dyadic Green's function for an unbounded gyroelectric chiral medium in cylindrical coordinates," Chin. Phys., Vol. 11, 1245, 2002.

19. Jackson, J. D., Classical Electrodynamics, John Wiley and Sons Inc., New York, 1999.

20. Gradshteyn, I. S. and I. W. Ryzhik, Table of Integrals, Series and Products, Academic, 1965.