Vol. 39
Latest Volume
All Volumes
2013-04-01
Electrostatics of a Nanowire Including Nonlocal Effects
By
Progress In Electromagnetics Research Letters, Vol. 39, 27-36, 2013
Abstract
We develop a method for calculating transverse static polarizability (per unit length) of a bulk nanowire by taking in to account the temporal and spatial dispersion. To describe these phenomena, we developed analytical theory based on local random-phase approximation and plasmon pole approximation. Our theory is very general in the sense that it can be applied to any material which can be characterized by a bulk dielectric function of the form ε(w,k). The theory is applied to calculate the transverse static polarizability of dielectric nanowire.
Citation
Prabath Hewageegana, "Electrostatics of a Nanowire Including Nonlocal Effects," Progress In Electromagnetics Research Letters, Vol. 39, 27-36, 2013.
doi:10.2528/PIERL12113004
References

1. Dasgupta, B. B. and R. Fuchs, "Polarizability of a small sphere including nonlocal effects," Phys. Rev. B, Vol. 24, 554, 1981.
doi:10.1103/PhysRevB.24.554

2. Rojas, R., F. Claro, and R. Fuchs, "Nonlocal response of a small coated sphere," Phys. Rev. B, Vol. 37, No. 6799, 1988.

3. Scholl, J., A. Koh, and J. Dionne, "Quantum plasmon resonances of individual metallic nanoparticles," Nature, Vol. 483, No. 421, 2012.

4. Abajo, F. J. G., "Nonlocal effects in the plasmons of strongly nteracting nanoparticles, dimers, and waveguides," Phys. Chem. C, Vol. 112, 17983, 2008.
doi:10.1021/jp807345h

5. Jung, J. and T. Pedersen, "Polarizability of nanowires at surfaces: exact solution for general geometry," Opt. Express, Vol. 20, 3663, 2012.
doi:10.1364/OE.20.003663

6. Aizpurua, J. and A. Rivacoba, "Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams," Phys. Rev. B, Vol. 78, 035404, 2008.
doi:10.1103/PhysRevB.78.035404

7. Ruppin, R., "Extinction properties of thin metallic nanowires," Opt. Comm., Vol. 190, 205, 2001.
doi:10.1016/S0030-4018(01)01063-X

8. Venermo, J. and A. Sihvola, "Dielectric polarizability of circular cylinder," J. Electrostatics, Vol. 63, 101, 2005.
doi:10.1016/j.elstat.2004.09.001

9. Krcmar, M., W. M. Saslow, and A. Zangwill, "Electrostatics of conducting nanocylinders," J. Appl. Phys., Vol. 93, 3495, 2003.
doi:10.1063/1.1540712

10. Lindhard, L., Dan. Mat. Phy. Medd., Vol. 28, 1, 1954.

11. Mahan, G. D., Many-Particle Physics, Plenum, New York, 1990.
doi:10.1007/978-1-4613-1469-1_1

12. Liftshitz, E. M. and L. P. Pitaevskii, Physical Kinetics, Butterworth-Heinemann, Oxford, 1997.

13. Hedin, L., B. I. Lundqvist, and S. Lundqvist, "New structure in the single-particle spectrum of an electron gas," Solid State Commun., Vol. 5, 237, 1967.
doi:10.1016/0038-1098(67)90264-5

14. Ritchie, H. and A. L. Marusak, "The surface plasmon dispersion relation for an electron gas," Surf. Sci., Vol. 4, 234, 1966.
doi:10.1016/0039-6028(66)90003-3

15. Johnson, L. and R. P. Rimbey, "Aspects of spatial dispersion in the optical properties of a vacuum-dielectric interface," Phys. Rev. B, Vol. 14, 2398, 1976.
doi:10.1103/PhysRevB.14.2398

16. Echenique, M., R. H. Ritchie, N. Barbern, and J. Inkson, "Semiclassical image potential at a solid surface," Phys. Rev. B, Vol. 23, 6486, 1981.
doi:10.1103/PhysRevB.23.6486

17. Fuchs, R. and R. G. Barrera, "Dynamical response of a dipole near the surface of a nonlocal metal," Phys. Rev. B, Vol. 24, 2940, 1981.
doi:10.1103/PhysRevB.24.2940

18. Li, K. and W.-Y. Pan, "Dyadic Green's function for an unbounded gyroelectric chiral medium in cylindrical coordinates," Chin. Phys., Vol. 11, 1245, 2002.

19. Jackson, J. D., Classical Electrodynamics, John Wiley and Sons Inc., New York, 1999.

20. Gradshteyn, I. S. and I. W. Ryzhik, Table of Integrals, Series and Products, Academic, New York, 1965.