
Progress In Electromagnetics Research Letters, Vol. 39, 27–36, 2013

ELECTROSTATICS OF A NANOWIRE INCLUDING
NONLOCAL EFFECTS

Prabath Hewageegana*

Department of Physics, University of Kelaniya, Kelaniya 11600, Sri
Lanka

Abstract—We develop a method for calculating transverse static
polarizability (per unit length) of a bulk nanowire by taking in
to account the temporal and spatial dispersion. To describe these
phenomena, we developed analytical theory based on local random-
phase approximation and plasmon pole approximation. Our theory is
very general in the sense that it can be applied to any material which
can be characterized by a bulk dielectric function of the form ε(ω, k).
The theory is applied to calculate the transverse static polarizability
of dielectric nanowire.

1. INTRODUCTION

It is well known that the electronic and optical properties of very small
structures, such as nanosphers [1–4], nanowires and nanocavities [5–
7], nanocylinders and wires [7–9], are very different from those of the
corresponding bulk materials because of surface effects. Nanosystems
possess unique properties different from those of macroscopic materials
when characteristic lengths govern their properties. Therefore,
the spatial dispersion becomes much more important when the
characteristic size of the particle or distances between them becomes
comparable to the characteristic scale of the system [1, 2, 7].

One of the consequences of such a small size of the system is that
the electric field E and the displacement vector D are related by a
nonlocal relationship instead of the usual local relation. Assuming that
fields are weak enough that displacement vector D can be obtained by
perturbation theory, one can obtain integral linear-response relation in
terms of the corresponding fields (i.e., relations between D and electric
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field E
D(r) =

∫

V
ε
(
r, r′, ω

)
E

(
r′

)
d3r′ (1)

here ε(r, r′, ω) is the dielectric response function.
The displacement at point r depends on the values of the electric

field at neighboring points r′ (spatial dispersion). A spatially dispersive
medium is therefore also called a non-local medium. This effect can
be observed at interface between different media or in metallic objects
with sizes comparable with the mean-free path of electrons. In most
cases of interest, the effect of the spatial dispersion is very week;
therefore we can assume that the materials of the system are isotropic.
Otherwise, ε would have been a tensor, which would make no principal
difficulty but make formulas somewhat more complicate. However,
on the other hand temporal dispersion, is a widely encountered
phenomenon and it is important to take it accurately into account.

As we discussed above the relation (1) is non-local. However, one
can use mathematically equivalent description in Fourier domain which
is local,

D(k) = ε(k)E(k), (2)

Here we have introduced the corresponding arguments in Fourier
domain for the electric field

E(k) =
∫

E(r)e(ik·r−iωt)d3r (3)

and one can get similar expressions for other quantities.

1.1. Nonlocal Dielectric Function

Energy ~ω and momentum k dependence of the nonlocal dielectric
function ε(k, ω) is due to the spatial correlation between the induced
charge density and lattice ions, an effect which prevents the pulling up
of electrons at short distances. There are some situations where the
momentum transfer is important, and a local dielectric response, ε(ω),
is not enough to accurately describe the interaction between electrons
and sample. One of them is electron microscopy. Also, when two
interfaces interact in very close proximity, or when large scattering
angles of the incident beam are used, the higher values of transferred
momentum are essential. In such a situation, one needs to consider a
nonlocal dielectric function to describe the medium.

To describe the k dependance of the dielectric response, one can
consider well-known Lindhard formula [10–12], which is one of the
closed solutions in the theory of Fermi systems that explicitly gives
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the nonlocal dielectric response function (longitudinal) ε(k, ω).

ε(k, ω) = 1 +
3ω2

p

k2v2
F

[
1− ω

2kvF
ln

(
ω + kvF

ω − kvF

)]
(4)

where ωp is plasma frequency and vF the electron speed at the Fermi
surface. The complex function in Eq. (4), ln(ω+kvF

ω−kvF
) is defined as

ln(ω+kvF
ω−kvF

) = ln |ω+kvF
ω−kvF

| − iπ for (ω+kvF
ω−kvF

) < 0. Note that ε(k, ω) has
a non-zero imaginary part, which describes optical losses, only when
ω < kvF . These optical losses can be connected to the excitation by
a field of incoherent electron-hole pairs. This phenomenon is called
Landau damping, which is described by Eq. (4). The Landau damping
actually is dephasing, where coherent field oscillations are transformed
into incoherent electron hole pairs, but the total energy of the system
is not changed. Landau damping is fulfilled when the size of the system
is comparable to or less than the correlation length, lc, then condition,
ω < kvF , satisfies this limit.

This situation can be also highly important for nanooptics: which
is a modern branch of optical science that explores how optical
frequency radiation can be confined on the nanoscale, i.e., 1–100 nm
(much smaller than the optical wavelength). Such nanolocalized fields
are due to the interaction processes (oscillation of polarization charges)
between electromagnetic radiation and conduction electrons at metallic
interfaces or in small metallic nanostructures, leading to an enhanced
optical near field of sub-wavelength dimension. Such oscillations on
the nanoscale are called surface plasmons.

Another example of such a behavior of k dependence of dielectric
response is given by plasmon pole approximation [13] which accounts
for the free electron oscillations and partially for the electron-hole pair
generation in the material.

ε(k, ω) = 1− ω2
p

ω(ω + iγ)− 3
5k2v2

F

(5)

Actually, this is a useful approximation (random-phase approximation)
of Eq. (4). One can show that in the large k limit Eq. (5) tends to the
energy-momentum relationship of a single electron, ω = k2/2 while in
the small k limit it reproduces the bulk-plasmon dispersion relation.
This approximation has been used in three- and two-dimensional
systems, with good agreement with more sophisticated treatment and
experimental results.

Nonlocal corrections of the response should produce a difference
between the surface mode positions and excitation strengths. Nonlocal
effects have been largely studied in the planar geometry. In particular,
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different features of spatial dispersion have been considered to obtain
the image potential outside a metallic semi-infinite planar interface [14–
17]. On the other hand, for nanoparticles or nanowires, where the
induced charge density is always limited into very small regions,
and therefore strongly interacting, this correlation is expected to be
stronger. Therefore, nonlocal effects are likely to be more relevant.

2. MODEL AND EQUATIONS

Let us assume that an external electric field E = E0(ω)x̂ is applied
to a nanowire whose radius is a, and the material is described by
nonlocal dielectric function ε(k, ω) [see Fig. 1]. Here retardation is
neglected: size of the nanowire is much smaller than the wavelength of
the excitation field.

),(g k ),(ε k
x

z
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0E

a

l

ω

=

Figure 1. Schematics of a cylindrical nanowire of radius a with the
axis oriented along the z axis characterized by a nonlocal dielectric
function ε(k, ω). The external electric field oriented in x axis.

The potential V (r) and radial component of the displacement
vector Dr(r) for r > a are given by

V (r) = −E0r cosϕ +
℘

r
cosϕ (6)

Dr(r) = Er(r) = E0 cosϕ +
℘

r2
cosϕ (7)

where ℘ is the induced line dipole with dipole moment per unit length
℘/` and orientation along x. Here ϕ is the angle between the vectors
r and E.
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Inside the wire (r < a), we can write
∇ ·D = 0 and ∇×E = 0. (8)

Following Ritchie and Marusak [14], we will assume an infinite
fictitious medium in order to solve for the fields inside the wire. This
medium satisfies the following conditions: (i) Maxwell’s equations are
continued to the r > a region of the infinite medium, (ii) The fields
inside the real wire are the same as the ones of the infinite medium
with the same response function, (iii) The normal component of the
displacement Dr is discontinuous in r = a in this infinite system, but
the tangential components are continuous. Therefore, we introduce a
uniform dielectric medium with a fictitious cylindrical surface of charge
at r = a which acts as a source for D.

Because of this, ∇ · D = 0, which is normally valid in an
infinite continuous medium, does not hold on the surface of the wire.
Furthermore, D(r) =

∫
ε(|r− r′|, ω)E(r′)d3r′ by our assumption and

∇×E = 0 everywhere. Therefore, now we can introduce new potential
function VD(r)

D(r) = −∇VD(r) (9)

Next we define

VD(k) =
∫

VD(r)exp(−ik · r)d3r (10)

and its inverse

VD(r) =
1

(2π)3

∫
VD(k)exp(−ik · r)d3k (11)

in this infinite system. Similar relations for the total potential V (r)
and its Fourier transform V (k) can be defined.

We note that outside the cylindrical surface of the fictitious
medium, V (r) and VD(r) must be of the form

V (r) = Ṽ(r)cosϕ, and VD(r) = ṼD(r)cosϕ (12)
Expressions in Eq. (8) together with Eq. (9) reduce to ∇2VD = 0.
Multiplying this equation by e−ik·r and integrating over r, we get

−k2VD(k) + aζ

[∫
e−ik·rcosϕdϕdz

]

r=a

= 0. (13)

Although dṼD/dr is continuous at the actual cylinder-vacuum
interface, it is discontinuous at r = a in our fictitious medium.
Therefore, the ζ in the Eq. (13) can be written as

ζ = −
[

dṼD

dr

]

r=a+

+

[
dṼD

dr

]

r=a−
(14)
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We expand eik·r in cylindrical coordinates by using the relation [18]

e(ik·r) = eiλz
m=∞∑

m=−∞
imJm(pr)eim(ϕ−ϕp) (15)

where k = kk̂ = pp̂ + λẑ is Fourier transform variable in cylindrical
coordinates (p, ϕp, λ), and Jm is the Bessel function of order m. After
integrating Eq. (13) over z and ϕ we get

k2VD(k) +
2πa

λ
ζJ1(pa)cosϕp = 0. (16)

Then one can show that

VD(k) = −2πa

λk2
ζJ1(pa)cosϕp (17)

and,

V (k) = − 2πa

λk2ε(k, ω)
ζJ1(pa)cosϕp. (18)

Now we come back to the space coordinate using equations like
Eq. (11). For r < a, this gives

VD(r) =
ζr

2
cosϕ and V (r) =

aζ

2
F(r)cosϕ (19)

where

F(r) = − i

π

∫
eiλzJ1(pa)J1(pr)

λ (p2 + λ2) ε
(√

p2 + λ2, ω
)pdpdλ. (20)

We will take this potential as the one corresponding to our real
system inside the wire (r < a) and apply the boundary conditions at
r = a. We can match V (r, ω) and D(r) obtained from Eqs. (9) and (19)
with the corresponding quantities outside the wire, given by Eqs. (6)
and (7) at r = a. Then one can get the following system of equations

−E0a
2 + ℘ = a2ζF(r) and E0a

2 + ℘ = −1
2
ζa2. (21)

Our final result for ℘ can be written as

℘ = E0a
2

(
1− 2F(a)
1 + 2F(a)

)
(22)

where F(a) = F(r)|r=a. When ε(k, ω) → ε(ω), i.e., in the local limit
F(a) → [2ε(ω)]−1 and ℘ reduces to the familiar expression found in
textbooks [19], ℘ = E0a

2( ε(ω)−1
ε(ω)+1) and finally we define δ(ω) ≡ ℘/Eoa

2.
The δ(ω) can now be calculated from Eq. (22). Of particular interest
is the Im[δ(ω)], because it is proportional to the absorption coefficient
of the nanowire and its variation with frequency can be demonstrated.
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3. APPLICATIONS

Plasmon pole approximation: In this approximation, using Eq. (5) for
the dielectric function, one can determine the function F(a) given by
Eq. (20) as,

F(a) = − i

π

∫
eiλz

[
ξ2
2 −

(
λ2 + p2

)]
[J1(pa)]2

λ (λ2 + p2)
[
ξ2
1 − (λ2 + p2)

] pdpdλ. (23)

where ξ1 =
√

[ω(ω + iγ)− ω2
p]/β, ξ2 =

√
ω(ω + iγ)/β and β =√

3/5vF . One can easily determine the function F(a) given by
Eq. (23) [20]

F(a) = −ξ−2
1

(
ξ2
1 − ξ2

2

)
[I1(iaξ1)K1(iaξ1)] (24)

Therefore, our final result for δ(ω) takes the form

δ(ω) =
ξ2
1 + 2

(
ξ2
1 − ξ2

2

)
[I1(iaξ1)K1(iaξ1)]

ξ2
1 − 2

(
ξ2
1 − ξ2

2

)
[I1(iaξ1)K1(iaξ1)]

(25)

To illustrate nonlocal effects, we present in Fig. 2 the Log[α(ω)] (where
α(ω) ≡ Im[δ(ω)]) for the nanowire as a function of the ω/ωp. Here we
take ωp = 8.16 eV, γ = 0.001ωp and vF = 106 ms−1.
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Figure 2. Variation of the Log[α(ω)] with ω/ωp for 1 nm radius
nanowire. The dashed curve shows the result of the local theory.

The calculated spectrum of a nanowire of radius 1 nm is shown in
Fig. 2. The results for the local effects are shown by the dashed curve,
and have only one peak, at the frequency ωp/

√
2. With the inclusion

of nonlocal effects, the main peak blueshifted from its classical value of
' 0.7ωp to ' 0.9ωp and more important series of small peaks appear
above the bulk plasma frequency. These subsidiary peaks are due to
the excitation of bulk plasmons. These peaks are in good agrement
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with the peaks that have been predicted in metal nanowires [7]. This
figure may be compared with Ruppin’s result given in [7] and with good
agreement. In particular, our result predicts (just like [7]) a shift in the
main peak and series of small peaks above plasma frequency. Our result
also agrees with that of [7] as far as the relative heights of the main
peak and these secondary peaks are concerned. The slight discrepancy
in the positions of the main and secondary peaks is presumably due
to the use of retardation effects in his work. Therefore, in [7] both the
longitudinal and transverse dielectric functions were considered. In [7],
all expressions and the final results depend on only one wave vector.
However, in the present approach the final results depend on all wave
vectors. In other words, in [7] the authors assumed that 1/ε(k, ω) had
sharp maximum at a particular wave vector. If the function 1/ε(k, ω)
has broad maximum then Eq. (20) is more reliable.

We now investigate the influence of the nanowire radius on the
position and the relative heights of the main peak and secondary peaks.
When we increase nanowire radius from 1nm to 2 nm, qualitatively, we
have a similar situation as in Fig. 2. As shown in Fig. 3(a), even though
the number of secondary peaks increases, their relative amplitudes
decrease. As expected, the position of the main peak redshifted from
its classical position. As shown in Fig. 3(b), this behavior continue
when the radius of the nanowire increases further.
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Figure 3. Same figure as Fig. 2. (a) For 2 nm and (b) for 5 nm radius
nanowire.

Due to their small amplitudes, detecting any of the secondary
peaks above the plasma frequency would be difficult. In a thin
nanowire, the electron collisions with the surface suppress the electron
mean free path. This will contribute to enhancement of the γ in the
dielectric function. As a result, it will further suppress the amplitudes
of the secondary peaks. Since the position of the main peak dose not
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depend on the γ, the main peaks might be observable in very small
nanowire.

4. CONCLUSION

We have developed a simple theoretical framework for the transverse
static polarizability of a nanowire that allows the inclusion of nonlocal
effects. Compared to a local approach, a blueshift in the energy of
the plasmons is obtained. In particular, our results are significant for
very thin wires, where the nonlocal effects are much more relevant.
In a sense, our theory is more general and can even be applied to
a nonlocal response function given in Eq. (4) (not shown here). We
hope that our work will be useful in studying the optical properties of
nanowires. Nonlocal effects in materials commonly used in plasmonics
such as gold and silver can be addressed within this model with the use
of an appropriate nonlocal response function. Finally, our expression
for δ(ω) can provide a simple but accurate way for taking into account
both the size and the frequency dependence of the polarizability.
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