Vol. 136
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-16
A Dual-Band Impedance Transforming Technique with Lumped Elements for Frequency-Dependent Complex Loads
By
Progress In Electromagnetics Research, Vol. 136, 123-139, 2013
Abstract
In this paper, a new technique to realize lumped dual-band impedance transformers for arbitrary frequency-dependent complex loads is proposed. For the complex impedance transforming, closed-form design equations are presented for a series-shunt and a shunt-series type and a concept of combination is also presented. They use the proposed equation of input impedance. This equation can easily and exactly obtain the input impedance of any two-port network using the ABCD matrix. Then, in order to realize dual-band operation, four topologies comprising two types and a design method are presented. This technique is numerically demonstrated by various examples with excellent results and it has advantages of simplicity, intuitiveness and versatility because it is a general solution for complex impedance transforming. The proposed dual-band impedance transforming technique can be utilized for practical matching problems such as microwave amplifiers and other devices.
Citation
Byeong-Taek Moon, and Noh-Hoon Myung, "A Dual-Band Impedance Transforming Technique with Lumped Elements for Frequency-Dependent Complex Loads," Progress In Electromagnetics Research, Vol. 136, 123-139, 2013.
doi:10.2528/PIER12111811
References

1. Chow, Y. L. and K. L. Wan, "A transformer of one-third wavelength in two sections-for a frequency and its first harmonic," IEEE Microwave Wireless Components Letters, Vol. 12, No. 1, 22-23, Jan. 2002.
doi:10.1109/7260.975723

2. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Transaction on Microwave Theory Techniques, Vol. 51, No. 4, 1157-1161, Apr. 2003.
doi:10.1109/TMTT.2003.809675

3. Wu, Y., Y. Liu, and S. Li, "A Compact pi-structure dual band transformer," Progress In Electromagnetics Research, Vol. 88, 121-134, 2008.
doi:10.2528/PIER08102601

4. Sophocles, J. and A. Orfanidis, "Two-section dual-band Chebyshev impedance transformer," IEEE Microwave Wireless Components Letters, Vol. 13, No. 9, 382-384, Sep. 2003.
doi:10.1109/LMWC.2003.817135

5. Castaldi, G., V. Fiumara, and I. Gallina, "An exact synthesis method for dual-band Chebyshev impedance transformers," Progress In Electromagnetics Research, Vol. 86, 305-319, 2008.
doi:10.2528/PIER08100605

6. Kuo, J.-T., C.-Y. Fan, and S.-C. Tang, "Dual-wideband bandpass ¯llters with extended stopband based on coupled-line and coupled three-line resonators," Progress In Electromagnetics Research, Vol. 124, 1-15, 2012.
doi:10.2528/PIER11120103

7. Wu, L., Z. Sun, H. Yilmaz, and M. Berroth, "A dual-frequency Wilkinson power divider," IEEE Transaction on Microwave Theory Techniques, Vol. 54, No. 1, 278-284, 2006.
doi:10.1109/TMTT.2005.860300

8. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

9. Li, J. C., Y. L.Wu, Y. A. Liu, J. Y. Shen, S. L. Li, and C. P. Yu, "A generalized coupled-line dual-band Wilkinson power divider with extended ports," Progress In Electromagnetics Research, Vol. 129, 197-214, 2012.

10. Fagotti, R., A. Cidronali, and G. Manes, "Concurrent hex-band GaN power amplifier for wireless communication systems," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 2, 89-91, 2011.

11. Chen, W., S. A. Bassam, X. Li, Y. Liu, K. Rawat, M. Helaoui, F. M. Ghannouchi, and Z. Feng, "Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges ," IEEE Transaction on Microwave Theory and Techniques, Vol. 59, No. 10, 2537-2546, Oct. 2011.
doi:10.1109/TMTT.2011.2164089

12. Chen, X. Q., X. W. Shi, Y. C. Guo, and C. M. Xiao, "A novel dual band transmitter using microstrip defected ground structure," Progress In Electromagnetics Research, Vol. 83, 1-11, 2008.
doi:10.2528/PIER08041503

13. Wu, Y., Y. Liu, and S. Li, "A dual-frequency transformer for complex impedances with two unequal sections," IEEE Microwave Wireless Components Letters, Vol. 19, No. 2, 77-79, 2009.
doi:10.1109/LMWC.2008.2011315

14. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency-dependent complex load impedance," IEEE Microwave Wireless Components Letters, Vol. 19, No. 10, 611-613, Oct. 2009.

15. Chuang, M. L., "Dual-band impedance transformer using two-section shunt stubs," IEEE Transaction on Microwave Theory Techniques, Vol. 58, No. 5, 1257-1263, May 2010.
doi:10.1109/TMTT.2010.2045560

16. Nikravan, M. A. and Z. Atlasbaf, "T-section dual-band impedance transformer for frequency-dependent complex loads," Electronics Letters, Vol. 47, No. 9, 551-553, Apr. 2011.
doi:10.1049/el.2010.7452

17. Li, S., B. H. Tang, Y. A. Liu, S. L. Li, C. P. Yu, and Y. L. Wu, "Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power amplifiers design," Progress In Electromagnetics Research, Vol. 131, 195-210, 2012.

18. Liu, Y., Y.-J. Zhao, and Y. Zhou, "Lumped dual-frequency impedance transformers for frequency-dependent complex loads," Progress In Electromagnetics Research, Vol. 126, 121-138, 2012.
doi:10.2528/PIER11121207

19. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, New York, 2005.

20. Medley, M. W., Microwave and RF Circuits: Analysis, Synthesis, and Design, Artech House, 1993.

21. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, New York, 2006.

22. Caloz, C., "Dual composite right/left-handed (D-CRLH) transmission line metamaterial," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 11, 585-587, Nov. 2006.
doi:10.1109/LMWC.2006.884773