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Abstract—In this paper, a new technique to realize lumped dual-band
impedance transformers for arbitrary frequency-dependent complex
loads is proposed. For the complex impedance transforming, closed-
form design equations are presented for a series-shunt and a shunt-
series type and a concept of combination is also presented. They
use the proposed equation of input impedance. This equation can
easily and exactly obtain the input impedance of any two-port
network using the ABCD matrix. Then in order to realize dual-
band operation, four topologies comprising two types and a design
method are presented. This technique is numerically demonstrated
by various examples with excellent results and it has advantages
of simplicity, intuitiveness and versatility because it is a general
solution for complex impedance transforming. The proposed dual-
band impedance transforming technique can be utilized for practical
matching problems such as microwave amplifiers and other devices.

1. INTRODUCTION

Impedance transformers are basic and important devices in microwave
systems. Among other things, the quarter-wavelength transmission
is the most widely used impedance transformer designed for single
band operation. However, recently, dual-band circuits and systems
have become required and thus the demand for dual-band impedance
transformers has been increasing. With the necessity of dual-
band operation, many researchers have increasingly focused on dual-
band impedance transformers. In order to realize the dual-band
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transformer, Chow and Wan [1] firstly developed a dual-band two-
section transformer that operates at a frequency and its first harmonic
for a real impedance load. Mozon [2] proposed a dual-band two-
section transformer at two arbitrary frequencies. Wu et al. [3] modified
the dual-band transformer [2] using a pi-structure for compact size.
Sophocles and Orfanidis [4] and Castaldi et al. [5] proposed dual-band
transformers with Chebyshev response. These dual-band transformers
are realized for a real impedance load at two designated frequencies.
Hence, they are applicable in passive circuits such as dual-band filters,
dual-band power dividers and so forth [6–9]. In terms of active circuits,
complex impedance transformers are required such as a dual-band
amplifier [10–12]. Wu et al. [13] extended a two-section transformer
to deal with equal complex loads at two frequencies using unequal
transmission lines. Liu et al. [14] proposed a dual-band three-section
transformer for frequency-dependent complex loads and Chuang [15]
proposed a dual-band transformer that consists of a two-section
transmission line and a two-section shunt stub. A T-section dual-band
transformer was also introduced by Nikravan and Atlasbaf [16]. For
operating at two relatively close operating frequencies, Li et al. [17]
presented a dual-band coupled-line transformer. The above dual-
band impedance transformers use distributed elements such as the
transmission line and the shunt stub, thus they are always bulky,
especially in the microwave region. Recently, a lumped type of dual-
band impedance transformer was developed by Liu et al. [18] for
decreasing the circuit size. [18] proposed only three structures with
lumped elements for frequency-dependent complex loads and adopted
extended the impedance matching concept of L-type networks that
uses graphical approach in Smith chart.

This paper proposes a new dual-band impedance transforming
technique, which uses the proposed equation of input impedance for
exact analytical solutions. This equation can easily and exactly obtain
the input impedance of any two-port network using ABCD matrix
for the complex impedance transforming. The proposed dual-band
impedance transforming technique can realize frequency-dependent
complex impedance matching at any two arbitrary frequencies. For the
complex impedance transformer using the lumped elements, a series-
shunt and a shunt-series type are presented with closed-form design
equations and a concept of combination is also presented. Then,
these types are comprised of four topologies to realize dual-band
operation. According to the proposed technique, general solutions
of the lumped dual-band transformer can be obtained for various
structures with limited number of lumped elements. The feasibility
and the versatility of the proposed dual-band impedance transforming
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technique are numerically demonstrated by various examples.

2. INPUT IMPEDANCE FOR COMPLEX IMPEDANCE
TRANSFORMING

Complex impedance transforming is matching from complex load to
required source which is generally 50 Ω. The equation of the input
impedance of a transmission line is widely used when distributed
elements are used to realize the impedance transformer. However, a
general equation of the input impedance does not exist when lumped
elements are used for complex impedance transforming. Hence, an
equation is proposed that introduces calculating the input impedance
of any two-port network for complex impedance transforming.

2.1. Converted from ABCD Matrix to S-matrix in General
Case and Reference Impedance

General input impedance of the two-port network is given by the
following well known equation:

Zin = Z0
1 + Γ
1− Γ

(1)

where Γ = S11 + S12S21ΓL/(1 − S22ΓL), Z0 is the characteristic
impedance of the two-port network, and ΓL is the reflection coefficient
at the load. In order to obtain the perfect matching, ΓL should be
equal to zero. Hence, Γ = S11 and then Zin can be calculated by S11

where ports 1 and 2 are input and load, respectively. S11 can then be
calculated as [19]

[
S11 S12

S21 S22

]
=

1
A + B/Zr + CZr + D[
A + B/Zr−CZr−D 2(AD −BC)

2 −A+B/Zr−CZr+D

]
(2)

where Zr is reference impedance to convert from ABCD matrix to
S-matrix. Equation (2) is valid when Zr is equal to Z0, which is the
real characteristic impedance, and they are equal to the terminated
impedance of ports 1 and 2. For this reason, Equation (2) cannot
be used to calculate the input impedance for the complex impedance
transforming. Hence, Equation (2) should be modified by a new
definition of Zr to realize the complex impedance transformer with
the lumped elements. The new definition of Zr will be explained in
the following section.
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2.2. Converted from ABCD Matrix to S-matrix for
Complex Impedance Transforming

Current and voltage of the two-port network at each ports are can be
obtained as [20]

Ii =
2
√
|ReZri | (ai − bi)

Zri + Z∗ri
, i = 1, 2 (3)

Vi =
2
√
|ReZri | (aiZ

∗
ri + biZri)

Zri + Z∗ri
, i = 1, 2 (4)

where i is the port number in the two-port network. ai and bi are
incident and reflected wave, respectively. The reference impedances
can have any values [20], thus we assume that Zr1 is real and Zr2 is
complex for complex impedance transforming. In order to obtain S11,
parameters of ABCD matrix can be calculated by (3) and (4) as

A=
V1

V2

∣∣∣∣
I2=0

=
√

Rr1

Rr2

a1+b1

2a2
, B=

V1

I2

∣∣∣∣
V2=0

=
√

Rr1Rr2
Zr2

Z∗r2

a1+b1

2a2

C =
I1

V2

∣∣∣∣
I2=0

=
1√

Rr1Rr2

a1−b1

2a2
, D=

I1

I2

∣∣∣∣
V2=0

=
√

Rr2

Rr1

Zr2

Z∗r2

a1−b1

2a2

(5)

According to Equation (5), S11 can be calculated as

S11=
b1

a1
=

√
Rr2
Rr1

+B/
√

Rr1Rr2/Z
′
r2−C

√
Rr1Rr2−D

√
Rr1
Rr2

/Z ′r2√
Rr2
Rr1

+B/
√

Rr1Rr2/Z ′r2 + C
√

Rr1Rr2+D
√

Rr1
Rr2

/Z ′r2
(6)

where Z ′r2 is Zr2/Z
∗
r2. Hence, the input impedance for the complex

impedance transforming can be obtained as

Zin = Z0
1 + S11

1− S11
= Z0

ARr2Z
′
r2 + B

DRr1 + CRr1Rr2Z ′r2
(7)

Equation (7) can be used for calculating the input impedance of
any two-port network such as transmission line. Hence, conventional
input impedance of the transmission line should be equal to the input
impedance of Equation (7) using the ABCD matrix of the transmission
line. The expression can be written as

Zin = Z0
ZL + jZ0 tan θ

Z0 + jZL tan θ
= Z0

Rr2Z
′
r2 + jZ0 tan θ

Rr1 + jY0Rr1Rr2Z ′r2 tan θ
(8)

According to Equation (8), the reference impedances can be defined as

Zr1 = Z0, Rr2Z
′
r2 = ZL (9)
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where Z0 is the characteristic impedance of the two-port network and
ZL the complex load impedance. Hence, Zr1 is real and Zr2 is complex,
and thus the assumption is correct. Finally, the input impedance
of the two-port network using ABCD matrix can be obtained by
substituting (9) into (7) and following the equation is given as

Zin =
AZL + B

D + CZL
(10)

Equation (10) easily calculates the input impedance using the ABCD
matrix and can be used in any two-port network for complex impedance
transforming. Hence, this equation is used for the dual-band complex
impedance transformer.

3. DUAL-BAND IMPEDANCE TRANSFORMING
TECHNIQUE

A lumped dual-band impedance transformer can have various
structures depending on the configuration of lumped elements. Hence,
two types of the transformer are presented to generalize the complex
impedance transformer with the lumped elements. They are a series-
shunt and shunt-series type, and combinations of these two types are
also presented. Then, these types only provide the parameters of
the whole structure for complex impedance transforming. Thus, in
order to realize dual-band operation, topologies comprising the two
types should be defined. Hence, we present four topologies that are
composite right/left-handed transmission line (CRLH TL) [21], dual-
CRLH TL (D-CRLH TL) [22], series resonance and parallel resonance
topology.

3.1. Series-shunt Type and Closed-form Design Equation

Figure 1 shows a series-shunt type of dual-band impedance
transformer. Series impedance and shunt admittance are cascaded and
input is in the direction of the series impedance. Then, a complex load
impedance is ZL = RL + jXL.

The ABCD matrix of the series-shunt type can be obtained as[
1−XpXq jXp

jXq 1

]
(11)

where jXp = Z and jXq = Y . The input impedance using ABCD
matrix can be easily calculated by (10). Hence, the input impedance
of the series-shunt type can be obtained as

Zin =
RL+j

{
XL−X2

LXq−R2
LXq+

(
1−2XLXq+R2

LX2
q+X2

LX2
q

)
Xp

}

(1−XLXq)2+(RLXq)2
(12)
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Figure 1. Series-shunt type
of dual-band impedance trans-
former.

Figure 2. Shunt-series type
of dual-band impedance trans-
former.

The input impedance is separated into real and imaginary parts. In the
real part, Xq is only an unknown value and thus Xq can be calculated
as

Xq =
RinXL ±

√
RinRL(R2

L + X2
L −RinRL)

Rin(R2
L + X2

L)
(13)

where Xq is real and thus RL − Rin + X2
L/RL > 0. In the imaginary

part, Xq is obtained, and a denominator is RL/Rin that is a known
value according to the real part. Hence, Xp can be calculated as

Xp =

(
R2

L + X2
L

)
Xq −XL + Xin

Rin
RL(

R2
L + X2

L

)
X2

q − 2XLXq + 1
(14)

Hence, the unknown values, Xp and Xq, are obtained in the series-
shunt type and thus according to the kind of topology, only Xp and
Xq have to be used.

3.2. Shunt-series Type and Closed-form Design Equation

Figure 2 shows a shunt-series type of dual-band impedance
transformer. Shunt admittance and series impedance cascaded and
input is in the direction of the shunt admittance. Then, a complex
load impedance is ZL = RL + jXL.

The ABCD matrix of the shunt-series type can be similarly
obtained as [

1 jXp

jXq 1−XpXq

]
(15)

The input impedance of the shunt-series type is calculated by (10) as

Zin =
RL + j

{
(XL + Xp + (−R2

L − (XL + Xp)2)Xq

}

(1−XpXq −XLXq)2 + (RLXq)2
(16)
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Real and imaginary parts consist of Xp and Xq, respectively and then
a denominator is RL/Rin that is a known value according to the real
part. In the imaginary part, an equation of Xq can be made by
rearrangement as

Xq =
XL + Xp − Xin

Rin
RL

(XL + Xp)2 + R2
L

(17)

Equation (17) is substituted into the real part. Then, the real part has
only one unknown value of Xp, and thus Xp can be calculated as

Xp = −XL ±
√

RL

(
Rin −RL +

X2
in

Rin

)
(18)

where Xp is real and thus Rin−RL+X2
in/Rin > 0. Hence, the unknown

values, which are Xp and Xq, are obtained in the shunt-series type.

3.3. Combinations of Series-shunt and Shunt-series Type

Two types of dual-band impedance transformer, which are the series-
shunt and the shunt-series type, can obtain most solutions for various
complex loads. However, they cannot be obtained for a precious few
complex loads because the radicand in Xp and Xq should be always
a positive value in (13), (18). Here, in order to solve this problem,
a concept of combination is proposed. The combination is a two-
stage impedance transformer using the series-shunt and the shunt-
series type. Figure 3 shows the T-type combination that the series-
shunt and the shunt-series type are cascaded. Figure 4 shows the
π-type combination that the shunt-series and the series-shunt type
are cascaded. This concept of combinations is simple. The complex
load is matched to Zin2 at midpoint, and then Zin2 is matched to
Zin1, and then Zin1 is required input impedance which is generally
50Ω. While the number of the lumped elements is increased, these
combinations provide more flexible solutions. Then, the number of
lumped elements of impedances or admittances at midpoint can be
reduced when Yses and Yshs are only parallel resonance and Zses and
Zshs are only series resonance such as CRLH TL topology. The concept
of these combinations provides applicability and extendibility of the
proposed design method using closed-form equations of the series-shunt
and the shunt-series type.

3.4. Topologies and Analysis for Dual-band Operation

For the complex impedance transforming, two types of the impedance
transformer were presented. Then, in order to realize the dual-band
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Figure 3. T-type combination.

Figure 4. π-type combination.

Figure 5. CRLH TL topology for dual-band impedance transformer.

operation, these two types are comprised of four topologies, which
are CRLH TL, D-CRLH TL, series resonance and parallel resonance
topology. Figure 5 shows the CRLH TL topology of the series-shunt
type.

The CRLH TL has a band-pass characteristic and consists of
series resonance at series connection and parallel resonance at shunt
connection. Hence, the impedance of Z and the admittance of Y are
obtained as

Z =jXp = j

(
ωsLR− 1

ωsCL

)
, Y =jXq =j

(
ωsCR− 1

ωsLL

)
(19)

where ωs is the solution angular frequency. These Xp, Xq can be
calculated by (13), (14) because of series-shunt type and they have
two values at two arbitrary frequencies for the dual-band operation,
respectively because of frequency-dependent complex impedance loads.
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Hence, Xp1 and Xq2 can be obtained as

Xp1 = ωsLR − 1
ωsCL

, at fs1 (20a)

Xp2 = KωsLR − 1
KωsCL

, at fs2 (20b)

where K is frequency ratio, K = fs2/fs1 = ωs2/ωs, K ≥ 1. fs1

and fs2 are a first and a second frequency, respectively. According
to Equation (20), CL and LR can be calculated and LL and CR can
be also calculated by Xq using the same design process. Hence, the
component values (CR, CL, LR, LL) of the CRLH TL topology can be
obtained as

CR =
1
ωs

(
Xq1 +

1
ωsLL

)
(21a)

CL =
K2 − 1

ωsK(Xp2 −KXp1)
(21b)

LR =
1
ωs

(
Xp1 +

1
ωsCL

)
(21c)

LL =
K2 − 1

ωsK(Xq2 −KXq1)
(21d)

The CRLH TL topology of the shunt-series also uses Equation (21)
to calculate component values of the CRLH TL. Here, Xp1, Xp2,
Xq1 and Xq2 have two solutions at a frequency, respectively because
of (13), (18) and thus the combination of Xp1 and Xp2, and the
combination of Xq1 and Xq2 have four solutions, respectively. Hence,
according to Equation (21), these component values of the CRLH TL
topology can have four solutions. However, since component values are
always positive values, we should select a valid solution to satisfy this
condition.

Figure 6 shows the D-CRLH TL topology of the series-shunt
type. The D-CRLH TL basically has a band-stop characteristic [22],
and thus the dual-band impedance transformer using D-CRLH TL
topology has narrow bandwidth, although the impedance transforming
condition is satisfied. The D-CRLH TL consists of parallel resonance at
series connection and series resonance at shunt connection. Hence, the
equation of the component values of the D-CRLH TL can be applicable
for other topologies such as series resonance and parallel resonance
topology. The impedance of Z and the admittance of Y are obtained
as

Z =jXp =j
1

1/(ωsLR)−ωsCL
, Y =jXq =j

1
1/(ωsCR)−ωsLL

(22)
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Figure 6. D-CRLH TL topology
for dual-band impedance trans-
former.

Figure 7. Series resonance topol-
ogy for dual-band impedance
transformer.

According to the same design process in the CRLH TL topology, the
component values of the D-CRLH TL can be obtained as

CR = 1/
(

ωs

(
1

Xq1
+ ωsLL

))
(23a)

CL =
K

ωs(1−K2)

(
1

Xp2
− 1

KXp1

)
(23b)

LR = 1/
(

ωs

(
1

Xp1
+ ωsCL

))
(23c)

LL =
K

ωs(1−K2)

(
1

Xq2
− 1

KXq1

)
(23d)

Figure 7 shows the series resonance topology of the series-shunt
type. It consists of series resonance at series connection and series
resonance at shunt connection, and then it has only series resonance.
Hence, CL and LR, which is series resonance at series connection,
can be calculated by (21b) and (21c) and CR and LL, which is series
resonance at shunt connection, can be calculated by (23a) and (23d).

Figure 8 shows the parallel resonance topology of the series-shunt
type. It consists of parallel resonance at series connection and parallel
resonance at shunt connection, and then it has only parallel resonance.
Hence, CL and LR, which is parallel resonance at series connection,
can be calculated by (23b) and (23c) and CR and LL, which is parallel
resonance at shunt connection, can be calculated by (21a) and (21d).

The four topologies are introduced as above and the component
values of these four topologies are obtained for the dual-band
operation with frequency-dependent complex impedance loads. Hence,
according to the proposed technique, the lumped dual-band impedance
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Figure 8. Parallel resonance topology for dual-band impedance
transformer.

transformer can be realized for various complex loads with two types
and combinations using four topologies.

4. NUMERICAL EXAMPLES

Section 2 presents the input impedance for complex impedance
transforming using the ABCD matrix and Section 3 presents the dual-
band impedance transforming technique with lumped elements using
the proposed equation of input impedance in Section 2. Hence, in order
to verify the proposed technique, numerical examples are given. The
numerical examples consist of the series-shunt and shunt-series type,
the T- and the π-type combination using the CRLH TL topology.
Furthermore, an example is given for complex loads of a transistor
at the WLAN bands of 2.4 and 5GHz. All numerical examples are
matched to an input impedance Zin = 50 Ω.

4.1. Series-shunt and Shunt-series Type with CRLH TL
Topology

The closed-form design equations of the series-shunt and the shunt-
series type were presented, and then the CRLH TL topology in Figure 5
is selected to verify the proposed dual-band transformers. These
design parameters of the series-shunt and the shunt-series type are
shown in Tables 1 and 2 with frequency-dependent complex loads,
respectively. A first frequency f1 is fixed to 2 GHz and a second
frequency f2 is varying from 3 to 5 GHz. Figure 9 shows the simulated
reflection coefficients of various dual-band transformers in Tables 1
and 2. The complex loads are well matched to the input impedance
at both designated frequencies in various cases of the series-shunt and
the shunt-series type.
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(a) (b)

Figure 9. Reflection coefficients for dual-band transformer with
CRLH TL topology: (a) series-shunt type, and (b) shunt-series type.

Table 1. Design parameters for dual-band transformer using series-
shunt type with CRLH TL topology.

f1/f2

(GHz)

RL1

(Ω)

XL1

(Ω)

RL2

(Ω)

XL2

(Ω)

CR

(pF)

CL

(pF)

LR

(nH)

LL

(nH)

A 2/3 71.696 17.784 52.959 44.335 2.2336 0.6701 6.5746 2.3198

B 2/4 71.696 17.784 38.773 76.941 1.1813 0.7634 5.42 3.7749

C 2/5 71.696 17.784 28.84 111.77 0.6478 0.7146 5.9869 5.5356

Table 2. Design parameters for dual-band transformer using shunt-
series type with CRLH TL topology.

f1/f2

(GHz)

RL1

(Ω)

XL1

(Ω)

RL2

(Ω)

XL2

(Ω)

CR

(pF)

CL

(pF)

LR

(nH)

LL

(nH)

A 2/3 24.435 −35.59 13.08 −27.7 4.511 1.9632 4.069 1.0315

B 2/4 24.435 −35.59 7.924 −21.38 2.9876 6.4698 1.8221 1.372

C 2/5 24.435 −35.59 5.259 −16.68 2.5206 30.22 1.0529 1.5264

4.2. T- and π-type Combination with CRLH TL Topology

The concept of combination is presented in Section 3. Figures 3 and 4
show the T- and π-type combination, respectively. The complex load is
matched to Zin2 at midpoint, and then Zin2 is matched to the required
input impedance Zin = 50 Ω. The design parameters of the T- and π-
type combination for dual-band transformer with CRLH TL topology
in Figure 5 are shown in Tables 3 and 4, respectively, where subscripts
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Table 3. Design parameters for dual-band transformer using T-type
combination with CRLH TL topology.

f1/f2

(GHz)

RL1

(Ω)

XL1

(Ω)

RL2

(Ω)

XL2

(Ω)

Rin2-1

(Ω)

Xin2-1

(Ω)

Rin2-2

(Ω)

Xin2-2

(Ω)

A 2/3 63.756 −46.81 43.877 −47.73 150 0 55 0

B 2/4 63.756 −46.81 30.544 −43.54 150 0 55 0

C 2/5 63.756 −46.81 21.963 −38.25 150 0 55 0

f1/f2

(GHz)

CR-ses

(pF)

CL-ses

(pF)

LR-ses

(nH)

LL-ses

(nH)

CR-shs

(pF)

CL-shs

(pF)

LR-shs

(nH)

LL-shs

(nH)

A 2/3 1.1493 0.5441 6.0115 3.3338 1.3678 0.5983 8.4088 3.1905

B 2/4 0.5551 0.7592 2.7145 4.8511 1.0688 0.9507 4.4853 3.7564

C 2/5 0.3608 0.8677 1.671 5.6996 0.9625 1.2514 2.8849 4.0091

Table 4. Design parameters for dual-band transformer using π-type
combination with CRLH TL topology.

f1/f2

(GHz)

RL1

(Ω)

XL1

(Ω)

RL2

(Ω)

XL2

(Ω)

Rin2-1

(Ω)

Xin2-1

(Ω)

Rin2-2

(Ω)

Xin2-2

(Ω)

A 2/3 77.545 −34.61 43.927 11.448 40 0 30 0

B 2/4 77.545 −34.61 27.335 56.963 40 0 10 0

C 2/5 77.545 −34.61 18.4 99.275 40 0 5 0

f1/f2

(GHz)

CR-ses

(pF)

CL-ses

(pF)

LR-ses

(nH)

LL-ses

(nH)

CR-shs

(pF)

CL-shs

(pF)

LR-shs

(nH)

LL-shs

(nH)

A 2/3 3.1524 0.7241 5.082 1.4012 2.196 1.2169 3.6123 2.1167

B 2/4 2.5525 0.9255 3.178 1.6157 2.3873 1.9894 1.5915 1.9894

C 2/5 1.3461 0.9977 2.6833 2.3341 2.4252 2.571 0.8716 1.966

of ses and shs indicate series-shunt and shunt-series type, respectively.
Zin2-1 and Zin2-2 are input impedances of midpoint at f1 and f2,
respectively. Figure 10 shows the simulated reflection coefficients of
various cases in Tables 3 and 4 with the excellent results.

Here, in terms of the T-type, the number of parallel lumped
elements at midpoint is 4, which consists of two capacitances and
two inductances, because it uses a two-stage dual-band transformer.
However, as above in Section 3, it can be reduced to 2 by their
synthesis, when the CRLH TL topology is used, because it consists
of only parallel resonance at shunt connection. Likewise, in the π-type
it can be also reduced. Hence, although the combination types are
used, they can use limited number of lumped elements in the CRLH
TL topology.
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(a) (b)

Figure 10. Reflection coefficients for dual-band transformer with
CRLH TL topology: (a) T-type combination, and (b) π-type
combination.

Figure 11. Reflection coefficients for dual-band transformer with
loads of transistor.

4.3. Example for Transistor

A transistor of NE3210S01 from NEC is examined at WLAN bands
of 2.4 and 5 GHz. In this case, the series-shunt type is suitable for
complex impedance transforming and it has available solutions when
the CRLH TL and the series resonance topology are used.

These design parameters for dual-band transformer are shown in
Table 5, and Figure 11 shows the simulated reflection coefficients of
various cases in Table 5 where A and B are the CRLH TL and the series
resonance topology of the series-shunt type, respectively. According to
Figure 11, the complex loads of the transistor are well matched to the
input impedance at both designated frequencies in the two topologies.
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Table 5. Design parameters for dual-band transformer.

f1/f2

(GHz)

RL1

(Ω)

XL1

(Ω)

RL2

(Ω)

XL2

(Ω)

CR

(pF)

CL

(pF)

LR

(nH)

LL

(nH)

A 2.4/5 24.980 −172.6 25.022 −72.32 0.0172 8.7029 0.1778 6.6973

B 2.4/5 24.980 −172.6 25.022 −72.32 4.9902 8.7029 0.1778 7.7585

5. CONCLUSION

In this study, the dual-band impedance transforming technique for
arbitrary frequency-dependent complex loads has been developed. This
technique uses the proposed equation of input impedance, which
can easily obtain the input impedance of any two-port network
using the ABCD matrix. For the complex impedance transformer,
the series-shunt and the shunt-series types and the combinations
are presented. They are comprised of four topologies, and then
the analysis is presented for dual-band operation. The numerical
examples demonstrate the exactness, feasibility and versatility of the
proposed technique with limited number of lumped elements. The
proposed technique is applicable in practical matching problems, such
as microwave amplifiers and other devices.
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