Vol. 134
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-14
A Novel Compact Dual-Frequency Coupled-Line Transformer with Simple Analytical Design Equations for Frequency-Dependent Complex Load Impedance
By
Progress In Electromagnetics Research, Vol. 134, 47-62, 2013
Abstract
In order to perfectly match arbitrary frequency-dependent complex load impedances at two uncorrelated frequencies, a novel coupled-line impedance transformer without transmission-line stubs is proposed in this paper. This transformer mainly features small size, wide bandwidth, simple analytical design method, and easy planar implementation. The transformer simply consists of a coupled-line section and an additional transmission-line section. Due to the usage of a coupled-line section, the theoretical synthesis of the proposed transformer becomes very simple when compared with previous transformers and the total size of the planar circuit without deterioration of operating bandwidth becomes small. Furthermore, several numerical examples are presented to demonstrate the flexible dual-frequency matching performance. Finally, the profile of matching frequency-dependent complex load impedance at two arbitrary frequencies has been examined by simulation and measurement of two microstrip generalized T-junction power dividers. Good agreement between the calculated results and measured ones justifies this proposed transformer and the design theory.
Citation
Yongle Wu, Weinong Sun, Sai-Wing Leung, Yinliang Diao, and Kwok-Hung Chan, "A Novel Compact Dual-Frequency Coupled-Line Transformer with Simple Analytical Design Equations for Frequency-Dependent Complex Load Impedance," Progress In Electromagnetics Research, Vol. 134, 47-62, 2013.
doi:10.2528/PIER12101906
References

1. Bahl, I. J., "Broadband and compact impedance transformers for microwave circuits," IEEE Microwave Magazine, Vol. 7, No. 4, 56-62, Aug. 2006.
doi:10.1109/MMW.2006.1663990

2. Li, S., B. Tang, Y. Liu, S. Li, C. Yu, and Y. Wu, "Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power amplifiers design," Progress In Electromagnetics Research, Vol. 131, 195-210, 2012.

3. Liu, Y., Y.-J. Zhao, and Y. Zhou, "Lumped dual-frequency impedance transformers for frequency-dependent complex loads," Progress In Electromagnetics Research, Vol. 126, 121-138, 2012.
doi:10.2528/PIER11121207

4. Shamaileh, K. A. A., A. M. Qaroot, and N. I. Dib, "Non-uniform transmission line transformers and their application in the design of compact multi-band bagley power dividers with harmonics suppression," Progress In Electromagnetics Research, Vol. 113, 269-284, 2011.

5. Zhang, B., Y.-Z. Xiong, L. Wang, S. Hu, and L.-W. Li, "3D transformer design by through silicon via technology and its application for circuit design," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2513-2521, Jan. 2011.
doi:10.1163/156939311798806112

6. Wu, B., C.-H. Liang, T. Su, and X. Lai, "Wideband coaxial filters with impedance matching for VHF/UHF diplexer design," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 131-142, Jan. 2008.
doi:10.1163/156939308783122670

7. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1157-1161, Apr. 2003.
doi:10.1109/TMTT.2003.809675

8. Wu, Y., Y. Liu, and S. Li, "A dual-frequency transformer for complex impedances with two unequal sections," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 2, 77-79, Feb. 2009.
doi:10.1109/LMWC.2009.2034034

9. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency-dependent complex load impedance," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 10, 611-613, Oct. 2009.

10. Chuang, M.-L., "Dual-band impedance transformer using two-section shunt stubs," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, Part 1, 1257-1263, May 2010.

11. Wu, Y., Y. Liu, S. Li, C. Yu, and X. Liu, "A generalized dual-frequency transformer for two arbitrary complex frequency-dependent impedances," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 792-794, Dec. 2009.
doi:10.1109/LMWC.2009.2034034

12. Nikravan, M. A. and Z. Atlasbaf, "T-section dual-band impedance transformer for frequency-dependent complex impedance loads," Electronics Letters, Vol. 47, No. 9, 551-553, Apr. 2011.
doi:10.1049/el.2010.7452

13. Ang, K. S., C. H. Lee, and Y. C. Leong, "A broad-band quarter-wavelength impedance transformer with three reflection zeros within passband," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 12, 2640-2644, Dec. 2004.
doi:10.1109/TMTT.2004.837310

14. Jensen, T., V. Zhurbenko, V. Krozer, and P. Meincke, "Coupled transmission lines as impedance transformer," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2957-2965, Dec. 2007.
doi:10.1109/TMTT.2007.909617

15. Wincza, K. and S. Gruszczynski, "Asymmetric coupled-line directional couplers as impedance transformers in balanced and n-way power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 7, 1803-1810, Jul. 2011.
doi:10.1109/TMTT.2011.2141677

16. Chen, W., S. A. Bassam, et al. "Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 10, Part 1, 2537-2546, Oct. 2011.

17. Bassam, S. A., W. Chen, et al. "Linearization of concurrent dual-band power amplifier based on 2D-DPD technique," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 12, 685-687, Dec. 2011.
doi:10.1109/LMWC.2011.2170669

18. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Double the band and optimize," IEEE Microwave Magazine, Vol. 13, No. 2, 69-82, Mar. 2012.
doi:10.1109/MMM.2011.2181449

19. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Dual-band RF circuits and components for multi-standard software defined radios," IEEE Circuits and Systems Magazine, Vol. 12, No. 1, 12-32, First Quarter 2012.
doi:10.1109/MCAS.2011.2181074

20. Mongia, R., I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Chapter 4, Artech House Publishers, Boston, 1999.