Vol. 134
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-03
Investigations of Four-Port Circulator Utilizing Cylindrical Ferrite Coupled Line Junction
By
Progress In Electromagnetics Research, Vol. 134, 379-395, 2013
Abstract
In this paper the numerical and experimental investigations of four-port circulator utilizing longitudinally magnetized cylindrical ferrite coupled lines (CFCL) section are presented for the first time. In comparison to earlier models the proposed structure of circulator utilizes multilayer magic-T junction cascaded with cylindrical ferrite section of π/4 Faraday angle. The advantage of utilization of cylindrical section over the planar one is the possibility to design shorter ferrite junctions ensuring lower insertion losses. Moreover, the multilayer magic T-junction allows to improve performance of the proposed circulator by omitting the bandwidth limitation which exists in commonly used hybrid couplers with air-bridges. In the analysis of CFCL junction the full wave hybrid approach combining finite difference frequency domain method with method of moments and mode matching technique is applied. The planar feeding structures of circulator are designed with the use of commercial software. The simulated results of the entire circulator are compared with the measurement results of the fabricated prototype and a good agreement is achieved.
Citation
Adam Kusiek, Wojciech Marynowski, and Jerzy Mazur, "Investigations of Four-Port Circulator Utilizing Cylindrical Ferrite Coupled Line Junction," Progress In Electromagnetics Research, Vol. 134, 379-395, 2013.
doi:10.2528/PIER12101902
References

1. Yang, L.-Y. and K. Xie, "Design and measurement of nonuniform ferrite coupled line circulator," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 131-145, 2011.
doi:10.1163/156939311793898387

2. Queck, C. K. and L. E. Davis, "Broad-band three-port and four-port stripline ferrite coupled line circulators," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 2, 625-632, Feb. 2004.
doi:10.1109/TMTT.2003.822024

3. Marynowski, W. and J. Mazur, "Study of nonreciprocal devices using three-strip ferrite coupled line," Progress In Electromagnetics Research, Vol. 118, 487-504, 2011.
doi:10.2528/PIER11051711

4. Cao, M. and R. Pietig, "Ferrite coupled-line circulator with reduced length," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 8, 2572-2579, Aug. 2005.
doi:10.1109/TMTT.2005.852760

5. Kusiek, A., W. Marynowski, and J. Mazur, "Investigations of the circulation e?ects in the structure using ferrite coupled slot-line section," Microwave and Optical Technology Letters, Vol. 49, No. 3, 692-696, Jan. 2007.
doi:10.1002/mop.22246

6. Mazur, J., M. Solecka, R. Poltorak, and M. Mazur, "Theoretical and experimental treatment of a microstrip coupled ferrite line circulator," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 151, No. 6, 477-480, Dec. 2004.
doi:10.1049/ip-map:20041047

7. Mazur, J., M. Mazur, J. Michalski, and E. Sedek, "Isolator using a ferrite-coupled-lines gyrator," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 149, No. 5-6, 291-294, Oct./Dec. 2002.
doi:10.1049/ip-map:20020570

8. Marynowski, W., A. Kusiek, and J. Mazur, "Microstrip ferrite coupled line isolators," XVI International Microwaves, Radar and Wireless Communications Conference, Vol. 1, 342-345, Krakow, Poland, May 2006.

9. Marynowski, W., A. Kusiek, and J. Mazur, "Microstrip four-port circulator using a ferrite coupled line section," AEU - International Journal of Electronics and Communications, Vol. 63, No. 9, 801-808, Jul. 2008.
doi:10.1016/j.aeue.2008.06.008

10. Kusiek, A., W. Marynowski, and J. Mazur, "Investigations of nonreciprocal devices employing cylindrical ferrite coupled line junction," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 13, 1685-1693, 2012.
doi:10.1080/09205071.2012.708971

11. Queck, C. K. and L. E. Davis, "Microstrip and stripline ferrite-coupled-lines (FCL) circulators," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, 2910-2917, Dec. 2002.
doi:10.1109/TMTT.2002.805184

12. Mazur, J. and M. Mrozowski, "On the mode coupling in longitudinally magnetized waveguiding structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, No. 1, 159-164, Jan. 1989.
doi:10.1109/22.20034

13. Mazur, J., M. Mazur, and J. Michalski, "Coupled-mode design of ferrite-loaded coupled-microstrip-lines section," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 6, 1487-1494, Jun. 2002.
doi:10.1109/TMTT.2002.1006409

14. Chiang, C. T. and B.-K. Chung, "Ultra wideband power divider using tapered line," Progress In Electromagnetics Research, Vol. 106, 61-73, 2010.
doi:10.2528/PIER10061603

15. Zhang, H., X.-W. Shi, F. Wei, and L. Xu, "Compact wideband gysel power divider with arbitrary power division based on patch type structure," Progress In Electromagnetics Research, Vol. 119, 395-406, 2011.
doi:10.2528/PIER11071501

16. Sedighy, S. H. and M. Khalaj-Amirhosseini, "Compact Wilkinson power divider using stepped impedance transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1773-1782, 2011.
doi:10.1163/156939311797453980

17. Liu, G.-Q., L.-S. Wu, and W.-Y. Yin, "A compact microstrip rat-race coupler with modified lange and T-shaped arms," Progress In Electromagnetics Research, Vol. 115, 509-523, 2011.

18. Li, Q., X.-W. Shi, F. Wei, and J. G. Gong, "A novel planar 180° out-of-phase power divider for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 161-167, 2011.
doi:10.1163/156939311793898288

19. Kazerooni, M. and M. Aghalari, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 26, 87-96, 2011.
doi:10.2528/PIERL11071704

20. Deng, P.-H., J.-H. Guo, and W.-C. Kuo, "New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
doi:10.2528/PIER11111612

21. Davidovitz, M., "A compact planar magic-T junction with aperture-coupled difference port," IEEE Microwave and Guided Wave Letters, Vol. 7, No. 8, 217-218, Aug. 1997.
doi:10.1109/75.605482

22. Marynowski, W. and J. Mazur, "Investigation of multilayer magicT configurations using novel microstrip-slotline transitions," Progress In Electromagnetics Research, Vol. 129, 98-108, 2012.

23. Kusiek, A., W. Marynowski, and J. Mazur, "Investigations of cylindrical ferrite coupled line junction using hybrid technique," Progress In Electromagnetics Research, Vol. 120, 143-164, 2011.

24. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

25. Kaneda, N., B. Housmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 9, 1645-1649, Sep. 1997.
doi:10.1109/22.622937

26. Kowalczyk, P., M. Wiktor, and M. Mrozowski, "Efficient finite difference analysis of microstructured optical fibers," Optics Express, Vol. 13, No. 25, 10349-10359, Dec. 2005.
doi:10.1364/OPEX.13.010349

27. Garcia, S. G., T. M. Hung-Bao, R. G. Martin, and B. G. Olmedo, "On the application of finite methods in time domain to anisotropic dielectric waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 12, 2195-2206, Dec. 1996.
doi:10.1109/22.556447