Vol. 134
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-24
Generalized Analytical Design of Broadband Planar Baluns Based on Wire-Bonded Multiconductor Transmission Lines
By
Progress In Electromagnetics Research, Vol. 134, 169-187, 2013
Abstract
A novel generalized design procedure of broadband planar baluns based on wire-bonded multiconductor transmission lines (MTL) is presented hereby based on analytical equations. The proposed balun consists of two parts. The first one is an in-phase power divider, which equally splits the input power through its two outputs. The later are two MTLs with wire bonding between alternate conductors configured to introduce +90 and -90 degrees phase shift respectively, so that the balanced output signal has a 180 degree phase difference. In that sense, new closed-form design equations in order to calculate the design parameters of both multiconductor elements are obtained. These equations allow the proper dimensions of both MTLs to be computed irrespective of both the number of conductors and the coupling factor, and therefore, to determine the performance of the balun. The design procedure for wire-bonded MTL baluns has been assessed by means of full-wave electromagnetic simulations and by experimental work. In addition, the very good agreement between the theoretical results and measurements makes possible to define a time-saving design methodology.
Citation
Juan-Jose Sanchez-Martinez, and Enrique Marquez-Segura, "Generalized Analytical Design of Broadband Planar Baluns Based on Wire-Bonded Multiconductor Transmission Lines," Progress In Electromagnetics Research, Vol. 134, 169-187, 2013.
doi:10.2528/PIER12100809
References

1. Mongia, R., I.. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, Norwood, MA, 1999.

2. Kumar, B. and G. Branner, "Optimized design of unique miniaturized planar baluns for wireless applications," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 3, 134-136, Mar. 2003.
doi:10.1109/LMWC.2003.808717

3. Ang, K. S., Y. Leong, and C. H. Lee, "Multisection impedance-transforming coupled-line baluns," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 536-541, Feb. 2003.
doi:10.1109/TMTT.2002.807813

4. Salah-Eddin, M. and A. Safwat, "Defected-ground coupled microstrip lines and its application in wideband baluns," IET Microwaves, Antennas & Propagation, Vol. 1, No. 4, 893-899, Aug. 2007.
doi:10.1049/iet-map:20070018

5. Cloete, J., "Exact design of the marchand balun," 9th European Microwave Conference, 480-484, Sep. 1979.
doi:10.1109/EUMA.1979.332751

6. Nguyen, C. and D. Smith, "Novel miniaturised wideband baluns for MIC and MMIC applications," Electronics Letters, Vol. 29, No. 12, 1060-1061, Jun. 1993.
doi:10.1049/el:19930708

7. Tsai, M., "A new compact wideband balun," IEEE Microwave and Millimeter-wave Monolithic Circuits Symposium, 123-125, 1993.
doi:10.1109/MCS.1993.247462

8. Ang, K. S. and I. Robertson, "Analysis and design of impedance-transforming planar marchand baluns," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 2, 402-406, Feb. 2001.
doi:10.1109/22.903108

9. Lu, J.-C., C.-C. Lin, and C.-Y. Chang, "Exact synthesis and implementation of new high-order wideband marchand baluns," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 1, 80-86, Jan. 2011.
doi:10.1109/TMTT.2010.2090702

10. Jacques, R. and D. Meignant, "Novel wide band microstrip balun," 11th European Microwave Conference, 839-843, Sep. 1981.
doi:10.1109/EUMA.1981.332929

11. Rogers, J. and R. Bhatia, "A 6 to 20 GHz planar balun using a wilkinson divider and lange couplers," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 865-868, Jul. 1991.

12. Zhang, Z.-Y., Y.-X. Guo, L. C. Ong, and M. Chia, "A new wide-band planar balun on a single-layer PCB," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 6, 416-418, Jun. 2005.
doi:10.1109/LMWC.2005.850486

13. Antoniades, M. and G. Eleftheriades, "A broadband Wilkinson balun using microstrip metamaterial lines," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 209-212, 2005.
doi:10.1109/LAWP.2005.851005

14. Tseng, C.-H. and C.-L. Chang, "Wide-band balun using composite right/left-handed transmission line," Electronics Letters, Vol. 43, No. 21, 1154-1155, Nov. 2007.
doi:10.1049/el:20071759

15. Chongcheawchamnan, M., C. Y. Ng, K. Bandudej, A.Worapishet, and I. Robertson, "On miniaturization isolation network of an all-ports matched impedance-transforming marchand balun," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 7, 281-283, Jul. 2003.
doi:10.1109/LMWC.2003.814102

16. Cobos-Bandera, S., J. J. Sánchez-Martínez, and E. Márquez-Segura, "Mems-based reconfigurable test-set for differential and common mode measurement using a two-port network analyzer," 42nd European Microwave Conference (EuMC), Oct. 2012.

17. Faria, J. A. B., Multiconductor Transmission-line Structures: Modal Analysis Techniques, Wiley, New York, 1993.

18. Paul, C. R., Analysis of Multiconductor Transmission Line, Wiley, New York, 1994.

19. Marquez-Segura, E., F. Casares-Miranda, P. Otero, C. Camacho-Penalosa, and J. Page, "Analytical model of the wire-bonded interdigital capacitor," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 2, 748-754, Feb. 2006.
doi:10.1109/TMTT.2005.862634

20. Casares-Miranda, F., P. Otero, E. Marquez-Segura, and C. Camacho-Penalosa, "Wire bonded interdigital capacitor," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 700-702, Oct. 2005.
doi:10.1109/LMWC.2005.856835

21. March, S., "A wideband stripline hybrid ring (correspondence)," IEEE Transactions on Microwave Theory and Techniques, Vol. 16 , No. 6, 361, Jun. 1968.
doi:10.1109/TMTT.1968.1126693

22. Sanchez-Martinez, J. J., E. Marquez-Segura, P. Otero, and C. Camacho-Penalosa, "Artificial transmission line with left/right-handed behavior based on wire bonded interdigital capacitors," Progress In Electromagnetics Research B, Vol. 11, 245-264, 2009.
doi:10.2528/PIERB08120804

23. Sanchez-Martinez, J. J., E. Marquez-Segura, and C. Camacho-Penalosa, "Synthesis of CRLH-TLs based on a shunt coupled-line section," 42nd European Microwave Conference (EuMC), 2012.

24. Liu, G.-Q., L.-S. Wu, and W.-Y. Yin, "A compact microstrip rat-race coupler with modified lange and t-shaped arms," Progress In Electromagnetics Research, Vol. 115, 509-523, 2011.

25. Sanchez-Martinez, J. J. and E. Maquez-Segura, "Analytical study of wide-band bandpass filters based on wire-bonded multiconductor transmission lines with LH behaviour," Progress In Electromagnetics Research Letters, Vol. 31, 1-13, 2012.
doi:10.2528/PIERL12012504

26. Kuo, J.-T., C.-Y. Fan, and S.-C. Tang, "Dual-wideband bandpass filters with extended stopband based on coupled-line and coupled three-line resonators," Progress In Electromagnetics Research, Vol. 124, 1-15, 2012.
doi:10.2528/PIER11120103

27. Li, S., B. Tang, Y. Liu, S. Li, C. Yu, and Y. Wu, "Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power amplifiers design," Progress In Electromagnetics Research, Vol. 131, 195-210, 2012.

28. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

29. Ou, W., "Design equations for an interdigitated directional coupler," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 2, 253-255, Feb. 1975.
doi:10.1109/TMTT.1975.1128534

30. Kajfez, D. and B. Vidula, "Design equations for symmetric microstrip dc blocks," IEEE Transactions on Microwave Theory and Techniques, Vol. 28, No. 9, 974-981, Sep. 1980.
doi:10.1109/TMTT.1980.1130205

31. Page, J., E. Marquez-Segura, F. Casares-Miranda, J. Esteban, P. Otero, and C. Camacho-Penalosa, "Exact analysis of the wire-bonded multiconductor transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 8, 1585-1592, Aug. 2007.
doi:10.1109/TMTT.2007.902084

32. Pozar, D., Microwave Engineering, 2nd Edition, Wiley, New York, 1998.

33. Cohn, S., "A class of broadband three-port TEM-mode hybrids," IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 2, 110-116, Feb. 1968.
doi:10.1109/TMTT.1968.1126617

34. Kirschning, M. and R. Jansen, "Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 1, 83-90, Jan. 1984.
doi:10.1109/TMTT.1984.1132616

35. Faria, J. A. B., "Kirschning and Jansen computer-aided design formulae for the analysis of parallel coupled lines," Microwave and Optical Technology Letters, Vol. 51, No. 10, 2466-2470, 2009.
doi:10.1002/mop.24659

36. Eisenstadt, W. R., B. Stengel, and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-mode S-parameters, Artech House, Norwood, MA, 2006.