Vol. 134
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-13
Dielectric Characterization of the Yeast Cell Budding Cycle
By
Progress In Electromagnetics Research, Vol. 134, 1-22, 2013
Abstract
We combine experimental electrorotation data and the numerical analysis of the electrorotation chamber and cell to electrically characterize the Saccharomyces cerevisiae yeast budding cell cycle and to obtain the electrical parameters of the cell. To model the yeast cell we use spherical and doublet-shaped geometries with a four layered structure: cytoplasm, membrane, inner and outer walls. To derive the geometrical and electrical parameters of the yeast model we use the finite element method to calculate the yeast rotational velocity spectrum and apply the least-square method to fit the calculated values to experimental data. We show that the calculated yeast electrorotation spectra undergo significant changes throughout its budding cycle and that the calculated spectra fit experimental data obtained for 0% (start) and 50% representative budding stages very well. The analysis also shows the small variation of the rotation crossover frequency within a full span of the yeast growth cycle. As an application of this work, we apply the Maxwell-Wagner formalism to obtain the dielectric spectra of truly synchronized yeast suspensions.
Citation
Jose Luis Sebastian Franco, Aranzazu Sanchis Otero, Jose Roldan Madronero, and Sagrario Munoz San Martin, "Dielectric Characterization of the Yeast Cell Budding Cycle," Progress In Electromagnetics Research, Vol. 134, 1-22, 2013.
doi:10.2528/PIER12100406
References

1. MacQueen, L. A., M. Thibault, M. D. Buschmann, and M. R. Wertheimer, "Electro-manipulation of biological cells in microdevices," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 4, 1261-1268, 2012.

2. Li, H., T. Ye, and K. Y. Lam, "Numerical modeling of motion trajectory and deformation behavior of a cell in a nonuniform electric field ," Biomicrofluidics, Vol. 5, 021101, 2011.
doi:10.1063/1.3574449

3. Jones, T. B., "Basic theory of dielectrophoresis and electrorotation," IEEE Engineering in Medicine and Biology Magazine, 33-42, 2003.
doi:10.1109/MEMB.2003.1304999

4. Cena, E. G., C. Daltona, Y. Lia, S. Adamiab, L. M. Pilarskib, and K. V. I. S. Kaler, "A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells," Journal of Microbiological Methods, Vol. 58, 387-401, 2004.
doi:10.1016/j.mimet.2004.05.002

5. Sancho, M., G. Martinez, S. Munoz, J. L. Sebastian, and R. Pethig, "Interaction between cells in dielectrophoresis and electrorotation experiments," Biomicrofluidics, Vol. 4, 022802, 2010.
doi:10.1063/1.3454129

6. Hoettges, K. F., "Dielectrophoresis as a cell characterisation tool," Microengineering in Biotechnology: Methods in Molecular Biology, Vol. 583, 183-198, 2008.

7. Zienkiewicz, O. C., The Finite Element Method, 3rd Edition, McGraw-Hill, London, 1977.

8. Johnson, C., Numerical Solutions of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987.

9. Sekine, K., "Application of boundary element method to calculation of the complex permittivity of suspensions of cells in shape of D1h symmetry," Bioelectrochemistry, Vol. 52, 1-7, 2000.
doi:10.1016/S0302-4598(00)00072-6

10. Sancho, M., G. Martinez, and C. Martin, "Accurate dielectric modeling of shelled particles and cells," J. Electrost., Vol. 57, 143-156, 2003.
doi:10.1016/S0304-3886(02)00123-7

11. Sekine, K., Y. Watanabe, S. Hara, and K. Asami, "Boundary-element calculations for dielectric behavior of doublet-shaped cells," Biochim. Biophys. Acta, Vol. 1721, 130-138, 2005.
doi:10.1016/j.bbagen.2004.10.010

12. Pruyne, D., A. Legesse-Miller, L. Gao, Y. Dong, and A. Bretscher, "Mechanisms of polarized growth and organelle segregation in yeast," Annu. Rev. Cell Dev. Biol., Vol. 20, 559-591, 2004.
doi:10.1146/annurev.cellbio.20.010403.103108

13. McMurray, M. A. and J. Thorner, "Septins: Molecular partitioning and the generation of cellular asymmetry," Cell Division, Vol. 4, 18, 2009.
doi:10.1186/1747-1028-4-18

14. Held, P., "Monitoring growth of beer brewing strains of saccharomyces cerevisiae - The utility of synergy H1 for providing high quality kinetic data for yeast growth applications,", Biotek Application Note, 2010.

15. Asami, K., "Characterization of biological cells by dielectric spectroscopy," Journal of Non-Crystalline Solids, Vol. 305, 268-277, 2002.
doi:10.1016/S0022-3093(02)01110-9

16. Asami, K. and T. Yonezawa, "Dielectric behavior of non-spherical cells in culture," Biochim. Biophys. Acta, Vol. 1245, 317-324, 1995.
doi:10.1016/0304-4165(95)00116-6

17. Asami, K., E. Gheorghiu, and T. Yonezawa, "Dielectric behavior of budding yeast in cell separation," Biochim. Biophys. Acta, Vol. 1381, 234-240, 1998.
doi:10.1016/S0304-4165(98)00033-6

18. Lei, J., J. T. K. Wan, K. W. Yu, and H. Sun, "Dielectric behavior of nonspherical cell suspensions," J. Phys.: Condens. Matter, Vol. 13, 3583-3589, 2001.
doi:10.1088/0953-8984/13/15/302

19. Bordi, F., C. Cametti, and T. Gili, "Dielectric spectroscopy of erythrocyte cell suspensions. A comparison between Looyenga and Maxwell-Wagner-Hanai effective medium theory formulations," Journal of Non-Crystalline Solids, Vol. 305, 278-284, 2002.
doi:10.1016/S0022-3093(02)01111-0

20. Adohi, B. J-P., C. V. Bouanga, K. Fatyeyeva, and M. Tabellout, "Application of the Maxwell-Wagner-Hanai effective medium theory to the analysis of the interfacial polarization relaxations in conducting composite films," J. Phys. D: Appl. Phys., Vol. 42, 015302, 2009.
doi:10.1088/0022-3727/42/1/015302

21. Di Biasio, A., L. Ambrosonne, and C. Cametti, "The dielectric behavior of nonspherical biological cell suspensions: An analytical approach," Biophys. J., Vol. 99, 163-174, 2010.
doi:10.1016/j.bpj.2010.04.006

22. Asami, K., "Dielectric dispersion in biological cells of complex geometry simulated by the three-dimensional finite difference method," J. Phys. D: Appl. Phys., Vol. 39, 492-499, 2006.
doi:10.1088/0022-3727/39/3/012

23. Hozel, R., "Electric field calculation for electrorotation electrodes," J. Phys. D: Appl. Phys., Vol. 26, 2112-2116, 1993.
doi:10.1088/0022-3727/26/12/003

24. Maswiwat, K., M. Holtappels, and J. Gimsa, "Optimizing the electrode shape for four-electrode electrorotation chips," ScienceAsia, Vol. 33, 61-67, 2007.
doi:10.2306/scienceasia1513-1874.2007.33.061

25. Maswiwat, K., M. Holtappels, and J. Gimsa, "On the field distribution in electrorotation chambers: Influence of electrode shape," Electrochimica Acta, Vol. 51, No. 24, 5215-5220, 2006.
doi:10.1016/j.electacta.2006.03.048

26. Kakutani, T., S. Shibatani, and M. Sugai, "Electrorotation of non-spherical cells: Theory for ellipsoildal cells with an arbitrary number of shells," Bioelectrochemistry and Bioenergetics, Vol. 31, 131-145, 1993.
doi:10.1016/0302-4598(93)80002-C

27. Laforet, J., M. Frenea-Robin, H. Ceremonie, F. Buret, and L. Nicolas, "Automated cell characterization platform: Application to yeast protoplast study by electrorotation," Proc. of the 1st Int. Conf. on Biomedical Electronics and Devices, Biodevices, Funchal, Portugal, 2008, ISBN:978-989-8111-17-3..

28. Hughes, M. P., "Computer-aided analysis of conditions for optimizing practical electrorotation," Phys. Med. Biol., Vol. 43, 3639-3648, 1998.
doi:10.1088/0031-9155/43/12/019

29. Hughes, M. P., X. B. Wang, F. F. Becker, P. R. C. Gascoyne, and R. Pethig, "Computer-aided analyses of electric fields used in electrorotation studies," J. Phys. D: Appl. Phys., Vol. 27, 1564-1570, 1994.
doi:10.1088/0022-3727/27/7/035

30. Hozel, R., "Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz," Biophys. J., Vol. 73, No. 2, 1103-1109, 1997.
doi:10.1016/S0006-3495(97)78142-6

31. Vitols, E., R. J. North, and A. W. Linnane, "Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell," J. Biophys. Biochem. Cytol., Vol. 9, 689-699, 1961.
doi:10.1083/jcb.9.3.689

32. Moore, C. W., R. del Valle, J. McKoy, A. Pramanik, and R. E. Gordon, "Lesions and preferential initial localization of [S-methyl-3H] bleomycin A2 on Saccharomyces cerevisiae cell walls and membranes," Antimicrob. Agents Chemother., Vol. 36, No. 11, 2497-2505, 1992.
doi:10.1128/AAC.36.11.2497

33. Mulholland, J., D. Preuss, A. Moon, A. Wong, D. Dubrin, and D. Botstein, "Ultrastructure of the yeast actin cytoskeleton and its association," The Journal of Cell Biology, Vol. 125, No. 2, 1994.
doi:10.1083/jcb.125.2.381

34. Asami, K. and K. Sekine, "Dielectric modelling of cell division for budding and fission yeast," J. Phys. D: Appl. Phys., Vol. 40, 1128-1133, 2007.
doi:10.1088/0022-3727/40/4/033

35. Sebastian, J. L., S. Munoz, M. Sancho, G. Martnez, and G. Alvarez, "Electromechanical effects on multilayered cells in nonuniform rotating fields," Physical Review E, Vol. 84, 011926, 2011.
doi:10.1103/PhysRevE.84.011926

36. Sebastian, J. L., S. Munoz, M. Sancho, and G. Alvarez, "Polarizability of shelled particles of arbitrary shape in lossy media with an application to hematic cells," Physical Review E, Vol. 78, 051905, 2008.
doi:10.1103/PhysRevE.78.051905

37. Wang, X. B., R. Pethig, and T. B. Jones, "Relationship of dielectrophoretic and electrorotational behaviour exhibited by polarized particles," J. Phys. D: Appl. Phys., Vol. 25, 905-912, 1992.
doi:10.1088/0022-3727/25/6/001

38. Wang, X. B., Y. Huang, R. Holzel, J. P. H. Burt, and R. Pethig, "Theoretical and experimental investigations of the interdependence of the dielectric, dielectrophoretic and electrorotational behavior of colloidal particles," J. Phys. D: Appl. Phys., Vol. 26, 312-322, 1993.
doi:10.1088/0022-3727/26/2/021

39. Jones, T. B., Electromechanics of Particles, Cambridge University Press, Cambridge, 1995.

40. Wang, X. J., X. B. Wang, and P. R. C. Gascoyne, "General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method," J. Electrost., Vol. 39, 277-296, 1997.
doi:10.1016/S0304-3886(97)00126-5

41. Huang, Y., R. Holzel, R. Pethig, and X. B. Wang, "Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies," Phys. Med. Biol., Vol. 37, No. 7, 1499-1517, 1992.
doi:10.1088/0031-9155/37/7/003

42. Huang, J. P. and K. W. Yu, "First-principles approach to electrorotation assay," J. Phys.: Condens. Matter, Vol. 14, 1213-1221, 2002.
doi:10.1088/0953-8984/14/6/308

43. Kriegmaier, M., M. Zimmermann, K. Wolf, U. Zimmermann, and V. L. Sukhorukov, "Dielectric spectroscopy of Schizosac-charomyces pombe using electrorotation and electroorientation," Biochim. Biophys. Acta, Vol. 1568, 135-146, 2001.
doi:10.1016/S0304-4165(01)00210-0

44. Misirli, Z., E. T. Oner, and B. Kirdar, "Real imaging and size values of Saccharomyces cerevisiae cells with comparable contrast tuning to two environmental scanning electron microscopy modes," Scanning, Vol. 29, No. 1, 11-19, 2007.
doi:10.1002/sca.20005

45. Ren, Y., A. M. Donald, and Z. Zhang, "Investigation of the morphology, viability and mechanical properties of yeast cells in environmental SEM," Scanning, Vol. 30, No. 6, 435-442, 2008.
doi:10.1002/sca.20126

46. Osumi, M., "The ultrastructure of yeast: Cell structure and wall formation," Micron., Vol. 29, No. 2-3, 207-233, 1998.
doi:10.1016/S0968-4328(97)00072-3

47. Lesage, G. and H. Bussey, "Cell wall assembly in saccharomyces cerevisiae," Microbiol. Mol. Biol. Rev., Vol. 70, No. 2, 317-343, 2006.
doi:10.1128/MMBR.00038-05

48. Ferrier, G. A., A. N. Hladio, D. J. Thomson, G. E. Bridges, M. Hedayatipoor, S. Olson, and M. R. Freeman, "Microfluidic electromanipulation with capacitive detection for the mechanical analysis of cells," Biomicrofluidics, Vol. 2, 044102 (13pages), 2008.

49. Christopher, L. D., H. M. Gerard, and B. K. Douglas, "On the dielectric method of monitoring cellular viability," Pure & App. Chern., Vol. 65, No. 9, 1921-1926, 1993.
doi:10.1351/pac199365091921

50. Kestin, J., H. E. Khalifa, and R. J. Correia, "Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20-150°C and the pressure range 0.1-35MPa," J. Phys. Chem. Ref. Data, Vol. 10, No. 1, 1981.

51. Gascoyne, P. R. C., F. F. Becker, and X. B. Wang, "Numerical analysis of the influence of experimental conditions on the accuracy of dielectric parameters derived from electrorotation measurements," Bioelectrochemistry and Bioenergetics, Vol. 36, 115-125, 1995.
doi:10.1016/0302-4598(94)05015-M

52. Gimsa, J. and D. Wachner, "A polarization model overcoming the geometric restrictions of the Laplace solution for spheroidal cells: Obtaining new equations for field induced forces and transmembrane potential," Biophys. J., Vol. 77, 1316-1326, 1999.
doi:10.1016/S0006-3495(99)76981-X

53. Asami, K., E. Gheorghiu, and T. Yonezawa, "Dielectric behavior of budding yeast in cell separation," Biochim. Biophys. Acta, Vol. 1381, 234-240, 1998.
doi:10.1016/S0304-4165(98)00033-6