Vol. 27
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-24
A Method of Improving the Stability of Liao's Higher-Order Absorbing Boundary Condition
By
Progress In Electromagnetics Research M, Vol. 27, 167-178, 2012
Abstract
Liao's absorbing boundary condition (ABC) is a classic ABC algorithm. It has the advantages of better absorption effect, easy programming and needless to split field. However its numerical stability is poor, especially for the higher-order ones, which greatly limits the scope of its application. To solve this problem, a weighting method for improving the stability of Liao's higher-order ABC is presented in this paper. This method is simple and effective, and it can be implemented easily compared with other improvement methods before. It improves the stability of Liao's higher-order ABC remarkably, and extends its application range.
Citation
Lei Zhang, and Tongbin Yu, "A Method of Improving the Stability of Liao's Higher-Order Absorbing Boundary Condition," Progress In Electromagnetics Research M, Vol. 27, 167-178, 2012.
doi:10.2528/PIERM12092815
References

1. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of time-domain electromagnetic field equations," IEEE Trans. on Electromang. Compat., Vol. 23, No. 4, 377-382, Nov. 1981.
doi:10.1109/TEMC.1981.303970

2. Higdon, R. L., "Radiation boundary conditions for elastic wave propagation," SIAM J. Numer. Anal., Vol. 27, No. 4, 831-870, Aug. 1990.
doi:10.1137/0727049

3. Sudiarta, I., "An absorbing boundary condition for FDTD truncation using multiple absorbing surfaces," IEEE Trans. on Antennas and Propag。, Vol. 51, No. 12, 3268-3275.
doi:10.1109/TAP.2003.820954

4. Kivi, J. and M. Okoniewski, "Switched boundary condition (XBC) in FDTD," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 4, Apr. 2005.
doi:10.1109/LMWC.2005.845745

5. Sarto, M. S. and A. Scarlatti, "Integral equation boundary conditions for the efficient FDTD analysis of low-frequency transient problems," IEEE Transactions on Magnetics, Vol. 38, No. 2, Mar. 2002.

6. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

7. Katz, D. S., E. T. Thiele, and A. Taflove, "Validation and extension to three dimensional of the Berenger PML absorbing boundary condition for FDTD meshes," IEEE Microwave Guided Wave Lett., Vol. 4, 268-270, Aug. 1994.
doi:10.1109/75.311494

8. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, No. 2, 363-379, Sep. 1996.
doi:10.1006/jcph.1996.0181

9. Gao, S., J. L.-W. Li, and A. Sambell, "FDTD analysis of a dual-frequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
doi:10.2528/PIER04120102

10. Jariyanorawiss, T. and N. Homsup, "Implementation of FDTD scheme using PML for truncation of the head model in cellular phone simulations communications and information technology," IEEE International Symposium on Communications and Information Technology, ISCIT, 644-647, 2005.

11. Ramadan, O., "Unsplit field implicit PML algorithm for complex envelope dispersive LOD-FDTD simulations," Electron. Lett., Vol. 5, 17-18, 2007.

12. Jung, K.-Y., F. L. Teixeira, and R. Lee, "Complex envelope PML-ADI-FDTD method for lossy anisotropic dielectrics," IEEE Antennas and Wireless Proragation Letters, Vol. 6, 643, 2007.
doi:10.1109/LAWP.2007.913324

13. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/MM-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401

14. Sabri, M. M., J. Rashed-Mohassel, and N. Masoumi, "Application of FDTD-based macromodeling for signal integrity analysis in practical PCBs," Progress In Electromagnetics Research Letters, Vol. 5, 45-55, 2008.
doi:10.2528/PIERL08103103

15. Noroozi, Z. and F. Hojat Kashani, "Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
doi:10.2528/PIERL11070113

16. Sacks, Z. S., D. M. Kingsland, D. M. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. on Antennas Propag., Vol. 43, No. 12, 1460-1463, Dec. 1995.
doi:10.1109/8.477075

17. Gedney, S. D., "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. on Antennas and Propag., Vol. 44, No. 12, 1630-1639, Dec. 1996.
doi:10.1109/8.546249

18. Roden, J. A. and S D. Gedney, "Convolutional PML(CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Micro. Opt. Tech. Lett., Vol. 27, 334-339, Dec. 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

19. Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Scientia Sinica (Series A), 1063-1076, Oct. 1980.

20. Moghaddam, M. and W. C. Chew, "Stabilizing Liao's absorbing boundary conditions using single-precision arithmetic," IEEE Antennas and Propagation Society International Symposium Digest, 430-433, London, Ontario, Canada, Jun. 1991.

21. Chew, W. C. and R. L. Wagner, "A modified form of Liao's absorbing boundary condition," IEEE Antennas and Propagation Society International Symposium Digest, 535-539.

22. Wagner, R. L. and W. C. Chew, "An analysis of Liao's absorbing boundary condition," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 7-8, 993-1009, 1995.
doi:10.1163/156939395X00686

23. Costen, F., "Analysis and improvement of Liao's ABC for FDTD," IEEE Antennas and Propagation Society International Symposium, 2003.

24. Moore, T. G., J. G. Blaschak, A. Taflove, and G. A. Kriegsmann, "Theory and application of radiation boundary operators," IEEE Trans. on Antennas and Propag., Vol. 36, 1797-1812, Dec. 1988.
doi:10.1109/8.14402