
Progress In Electromagnetics Research M, Vol. 27, 167–178, 2012

A METHOD OF IMPROVING THE STABILITY OF
LIAO’S HIGHER-ORDER ABSORBING BOUNDARY
CONDITION

Lei Zhang* and Tongbin Yu

Institute of Communications Engineering, PLA University of Science
and Technology, No. 2 Biaoying Road, YuDao Street, Nanjing,
Jiangsu 210007, China

Abstract—Liao’s absorbing boundary condition (ABC) is a classic
ABC algorithm. It has the advantages of better absorption effect,
easy programming and needless to split field. However its numerical
stability is poor, especially for the higher-order ones, which greatly
limits the scope of its application. To solve this problem, a weighting
method for improving the stability of Liao’s higher-order ABC is
presented in this paper. This method is simple and effective, and
it can be implemented easily compared with other improvement
methods before. It improves the stability of Liao’s higher-order ABC
remarkably, and extends its application range.

1. INTRODUCTION

Due to the limitation of the computer capacity, appropriate boundary
condition should be assigned at the boundaries of the domain when
we solve the electromagnetics problems with the finite difference time
domain (FDTD) method. To solve this problem, many absorbing
boundary condition (ABC) algorithms were proposed [1–5]. The
presentation of Brenger’s perfectly matched layer (PML) ABC [6–
8] promoted the development of FDTD a big step. Because of
its perfect absorption effect, it is widely used in numerical solution
of EM scattering problems [9–15]. Afterward, scholars proposed
many modified PML ABCs, such as uniaxial PML (UPML) [16, 17],
convolutional PML (CPML) [18]. These algorithms all have better
accuracy. Although there are so many better ABCs, Liao’s ABC
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still is used in some numerical calculations which don’t need higher
requirement in accuracy, because of its simple form and lower
requirement in computer performance. So studying the stability of
Liao’s ABC has theoretical and practical significance.

Liao’s ABC was acquired by extrapolating wave function in
time and space domain based on the Newton’s backward differential
polynomial. It owns advantages of simple form, easy implementation
and better absorption capability, which can be used near the corners of
a computational grid and meet the requirements of more engineering
numerical applications. However, lack of stability has restricted
its application range, especially for the higher-order ones. Then
W. C. Chew and other scholars analyzed the reason of the instability
of Liao’s ABC [19–23], and they found that the theoretical value of
the pole of reflection coefficient is at the unit circle of the complex
plane. However, by the limitations of computer precision, this pole
may be shifted outside the unit circle, producing instability in the
FDTD scheme. They pointed out that the higher stability can be
realized when the poles of the reflection coefficient are within the
unit circle of the complex plane, and also stabilized Liao’s ABC by
adding small damping factor. Nevertheless, this method is not easy
to achieve, especially in Liao’s higher-order ABC, which is sensitive to
the extrapolation coefficient, a small change may produce catastrophic
instability.

Based on this, the stability of Liao’s ABC lies on its reflection
coefficient pole stability, if we can enhance the stability of the pole
of the reflection coefficient, we can make the Liao’s higher-order ABC
stable. With the calculation accuracy improved, the two dimensional
(2D) Liao’s second-order, third-order ABC and three dimensional (3D)
Liao’s second-order ABC are very stable. The Liao’s lower-order
ABC is very stable, its pole is stable and not easy to be shifted by
the calculation error. However the Liao’s higher-order ABC pole is
sensitive to the calculation error, and easy to be shifted outside the
unit circle. Thus we can improve the stability of the pole of Liao’s
higher-order ABC by using of the advantage of Liao’s lower-order
ABC in stability. In this paper, we propose to improve the stability
of Liao’s higher-order ABC through weighting unstable Liao’s higher-
order ABC with stable Liao’s lower-order ABC. After weighted with
Liao’s lower-order ABC, the stability of the pole of Liao’s higher-order
ABC is enhanced, thus its stability is improved greatly, especially in
3D. Further, this method will not increase any additional storage and
CPU time. Numerical experiments demonstrate that the method is
accurate and effective.
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2. THEORY

The FDTD method is well known for the solution of the wave equation:(
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where φ is scalar field, which is computed on a rectangular
finite-difference grid with grid spacing ∆s and time step ∆t:
φ(m∆s, n∆s; l∆t) = φl

m,n−1. Using central differencing in time and
space domain, the wave equation is approximated as:
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At the boundary of the finite computational domain, an absorbing
boundary condition must be used to model radiation in a free space.

For a “right” boundary at x = xmax, Liao’s ABC gives the updated
boundary field φ (xmax, yj , t + ∆t) in terms of field values at previous
times lying along a straight line perpendicular to the boundary:

φ(xmax, yj , t+∆t)=
N∑

i=1

(−1)i+1CN
i φ(xmax−iαc∆t, yj , t−(i−1)∆t) (3)

where CN
i is the binomial coefficient N !/[i!(N − i)!], N the order of

the boundary condition, i the space step, and αc∆t the space sample
interval. If we set αc∆t equal to ∆s, the sample interval just coincides
with the grid, so the form of Liao’s ABC is very simple, the updated
boundary field of Liao’s second-order ABC is given as:

φ(xmax, yj , t + ∆t) = 2φ(xmax−1, yj , t)− φ(xmax−2, yj , t−∆t) (4)
And the Liao’s fourth-order ABC is given as:

φ(xmax, yj , t+∆t) = 4φ(xmax−1, yj , t)−6φ(xmax−2, yj , t−∆t)
+4φ(xmax−3,yj ,t−2∆t)−φ(xmax−4,yj ,t−3∆t) (5)

The improving algorithm is implemented by weighting Liao’s
higher-order ABC with stable Liao’s lower-order ABC. The Liao’s
higher-order ABC and Liao’s lower-order ABC are multiplied with
factor a and (1 − a) respectively, the range of a is from 0 to 1. The
common weighting form of Liao’s ABC can be given as:

φ(xmax, yj , t+∆t) = (1−a)
N∑

i=1

(−1)i+1CN
i φ(xmax−i, yj , t−(i−1)∆t)

+a
M∑

i=1

(−1)i+1CM
i φ(xmax−i, yj , t−(i−1)∆t) (6)
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where a is the weighting factor, and M , N are different order. In the
latter numerical experiments, M is set as the higher order.

For example, when improving the stability of Liao’s fourth-order
ABC by weighting method, we can weight Liao’s fourth-order ABC
with Liao’s second-order ABC. The improved updated boundary field
can be given as:

φ(xmax, yj , t+∆t)
=(4∗0.8+2∗ 0.2)φ(xmax−1,yj , t)−(6∗0.8+1∗ 0.2)φ(xmax−2, yj , t−∆t)

+(4 ∗ 0.8)φ(xmax−3, yj , t−2∆t)−(1 ∗ 0.8)φ(xmax−4, yj , t−3∆t) (7)

where a is set as 0.8.
The above is improving method in 2D. The improving method in

3D is same as the one in 2D.

3. NUMERICAL VALIDATION

In order to validate the availability of the weighting method in
improving the stability of Liao’s ABC, we conducted numerical
experiments which implemented the weighted Liao’s ABC in 2D and
3D grids. In order to analyze the reflection error, we computed the
global error [19], and compared them with six-cell-thick PML ABC
ones and second-order Mur ABC ones. Cases discussed here include:
1) 2D TE grid, calculation region is 100∗50 cells; and 2) 3D full vector
lattice, calculation region is 50 ∗ 50 ∗ 30 cells.

Figure 1 shows the model of the calculation domain in the
numerical experiments, Fig. 1(a) is the 2D model, its region is 100∗ 50
cells. Its four boundaries are set as the same ABC. Fig. 1(b) is the 3D
model, its region is 50 ∗ 50 ∗ 30 cells. When validating the stability, its
six boundaries are set as the same ABC. While validating the precision,
its five boundaries are set as PML ABC, and the last one is set as PML
ABC, Liao’s ABC or Mur ABC.

A sinusoidal point source (operating at 1 e 8 Hz) was set at the
center of the computational region, to validate the stability of the
weighted Liao’s ABC. The observation point was set five cells away
from the source in every coordinate direction. After calculating forty
thousand time steps, the wave data of the observation point were
compared with the ones which using PML ABC. The former results
agree well with the latter ones.

Figure 2 describes the electric field of observation point in the 2D
TE grid. It can be clearly seen that the weighted Liao’s fourth-order
and fifth-order ABC are still stable after calculating forty thousand
time steps. Compared with the original Liao’s fourth-order and fifth-
order ABC, its stability is improved notably. Because the original
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Figure 1. The model of the calculation domain. (a) The TE model
in 2D grids (100 ∗ 50). (b) The model in 3D grids (50 ∗ 50 ∗ 30).

Liao’s fourth-order ABC can be only calculated four thousand time
steps stably, and the original Liao’s fifth-order ABC can be only
calculated one thousand time steps stably in the same condition. We
studied the range of the weighting factor in different conditions. When
weighting Liao’s fourth-order ABC with Liao’s second or third-order
ABC, and weighting Liao’s fifth-order ABC with Liao’s third-order
ABC in 2D grids the weighting factor ranges from 0 to 0.8, while
weighting Liao’s fifth-order ABC with Liao second-order ABC, the
weighting factor ranges from 0 to 0.5.

Figure 3 shows the electric field near forty thousand time steps. It
can be clearly seen that, compared with the original Liao’s ABC, the
3D weighted Liao’s third-order and fourth-order ABC show excellent
stability. It can be calculated at least forty thousand time steps stably.
However, the original Liao’s third-order ABC can only be calculated
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Figure 2. The electric field at the point (55, 30) within the 100 ∗ 50
cells 2D TE FDTD grid for different order Liao’s ABC and 6-cell-thick
PML ABC, plotted as a function of time step number. (a) Original
Liao’s fourth-order ABC and PML ABC in 2D. (b) Original Liao’s
fifth-order ABC and PML ABC in 2D. (c) Improved Liao’s fourth-
order, fifth-order ABC and PML ABC in 2D.

four thousand steps, and the original Liao’s fourth-order ABC can only
be calculated six hundred steps. When weighting different order Liao’s
ABC, the weighting factor can be ranged from 0 to 0.8. In 3D grids we
find that weighting Liao’s ABC and Mur ABC can also stabilize the
higher-order Liao’s ABC.

When studying the numerical reflection errors, a “smooth compact
pulse” source was excited in the calculation region. The pulse has
an extremely smooth transition to zeros (its first five derivatives
vanishing) [24]. In the 2D calculation region, the pulse was set at the
center of the calculation region; a standard electric field was obtained
by running a large mesh, ΩT (having zero ABC artifact), centered upon
and registered with ΩB (having an outer boundary). The error due to
numerical reflections caused by ABC was obtained by subtracting the
field at any point inside ΩT from the field at the corresponding point



Progress In Electromagnetics Research M, Vol. 27, 2012 173

(a) (b)

(c)

Figure 3. The electric field at the point (30, 30, 20) within the
50 ∗ 50 ∗ 30 cells 3D FDTD grid for different order Liao’s ABC and
6-cell-thick PML ABC, plotted as a function of time step number.
(a) Original Liao’s third-order ABC and PML ABC in 3D. (b) Original
Liao’s fourth-order ABC and PML ABC in 3D. (c) Improved Liao’s
third-order, fourth-order ABC and PML ABC in 3D.

in ΩB, and the global error can be measured by summing the squares
of the error at each time step. While in 3D calculation region, confined
by the computer capacity, the standard electric field (50∗50∗30∗500)
can’t be obtained as the 2D one. So an alternative method was used.
Five boundaries of the 3D calculation region were set as 6-cell-thick
PML ABC, and the last one was set as PML ABC, Mur ABC or Liao’s
ABC (showing in Fig. 1(b)). The standard electric field was obtained
by setting the last boundary as large mesh along the x-direction. The
global error was obtained as the 2D ones.

Figure 4 shows the impact of the weighting factor on the global
error in five hundred time steps. It can be seen that the global error
of Liao’s higher-order ABC increases after weighting with lower-order
one, but it is still superior to the second-order Mur ABC. And the
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Figure 4. Global error energy (square of the electric field error at each
grid cell summed throughout the entire grid) within the 100 ∗ 50 cells
2D TE FDTD grid for different weighting factor (a = 0.8, 0.5, 0.1)
Liao’s ABC, second-order Mur ABC and 6-cell-thick PML ABC,
plotted as a function of time step number on a logarithmic vertical
scale. (a) Weighting Liao’s fourth-order ABC with Liao’s second-order
ABC in 2D grids. (b) Weighting Liao’s fourth-order ABC with Liao’s
third-order ABC in 2D grids. (c) Weighting Liao’s fifth-order ABC
with Liao’s third-order ABC in 2D grids.

adding error of weighting Liao’s fourth-order ABC with Liao’s third-
order ABC is the smallest in three weighting forms. The cause of
global error increasing is that the global error of Liao’s lower-order
ABC is larger than the higher-order ones. With the weighting factor
increasing, the global error changes unclearly, namely, the impact of
the weighting factor on the global error was unclear in 2D grids.

Figure 5 shows the impact of the weighting factor on the global
error in five hundred time steps in 3D. Fig. 5(a) shows that the global
error of Liao’s third-order ABC has minor increase when weighting
with the second-order one, and with the weighting factor increasing,
the global error is close to the original Liao’s third-order ABC one.
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Figure 5. Global error energy (square of the electric field error at each
grid cell summed throughout the entire grid) within the 50 ∗ 50 ∗ 30
cell 3D grids for different weighting factor (a = 0.8, 0.5, 0.1) Liao’s
ABC, second-order Mur ABC and 6-cell-thick PML ABC, plotted
as a function of time step number on a logarithmic vertical scale.
(a) Weighting Liao’s third-order ABC with Liao’s second-order ABC in
3D grids. (b) Weighting Liao’s fourth-order ABC with Liao’s second-
order ABC in 3D grids. (c) Weighting Liao’s third-order ABC with
first-order Mur ABC in 3D grids.

The weighted Liao’s ABC is superior to the second-order Mur ABC
in the term of reflection error. Fig. 5(b) shows that the global error
of Liao’s fourth-order ABC increases after weighting the second-order
one, but it is still superior to the second-order Mur ABC. The global
error decreases with the weighting factor increasing. Fig. 5(c) shows
that the global error of Liao’s third-order ABC increase clearly after
weighting with the first-order Mur ABC, and it increases with the
weighting factor increasing, which is different from the former. This
weighting form can stabilize the Liao’s third-order ABC, but it has no
superiority compared with the standard second-order Mur ABC.

The above graphs show the impact of the weighting factor and
weighting form on the global error, and compared with 6-cell-thick
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PML ABC and second-order Mur ABC. It can be seen that the impact
of weighting factor on the global error is significant in 3D grids than
in 2D grids, and the greater the weighting factor, the smaller the
global error in 3D, except weighting with Mur ABC. The error between
improved Liao’s ABC and original Liao’s ABC can be decreased by
selecting the closer stable order near the higher order, i.e., selecting
Liao’s third-order ABC instead of the second-order one weighting with
Liao’s fourth-order ABC in 2D.

4. CONCLUSION

A method of improving Liao’s ABC stability is proposed in this paper.
The method is implemented by weighting Liao’s higher-order ABC
with stable lower-order one or other ABC. Compared with others
method, it is easy to implement, and effective to stabilize the Liao’s
higher-order ABC in 2D and 3D. It also can be used to stabilize more
higher order Liao’s ABC. The numerical experiments validate that the
weighted Liao’s ABC notably improves its stability, which is superior
to the Mur ABC. With the help of this method, the stable Liao’s
higher-order ABC can be widely applied in engineering calculation.
This method can be used to solve similar problems in other fields.
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