Vol. 45
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-10-24
Isogeometric Shape Optimization for Electromagnetic Scattering Problems
By
Progress In Electromagnetics Research B, Vol. 45, 117-146, 2012
Abstract
We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach for solving this problem is based on shape optimization and isogeometric analysis. One of the major difficulties we face to make these methods work together is the need to maintain a valid parametrization of the computational domain during the optimization. Our approach to generating a domain parametrization is based on minimizing a second order approximation to the Winslow functional in the vicinity of a reference parametrization. Furthermore, we enforce the validity of the parametrization by ensuring the non-negativity of the coefficients of a B-spline expansion of the Jacobian. The shape found by this approach outperforms earlier design computed using topology optimization by a factor of one billion.
Citation
Dang Manh Nguyen, Anton Evgrafov, and Jens Gravesen, "Isogeometric Shape Optimization for Electromagnetic Scattering Problems," Progress In Electromagnetics Research B, Vol. 45, 117-146, 2012.
doi:10.2528/PIERB12091308
References

1. Ding, Y., "Shape optimization of structures: A literature survey," Computers & Structures, Vol. 24, No. 6, 985-1004, 1986.
doi:10.1016/0045-7949(86)90307-X

2. Delfour, M. and J. Zolesio, "Shapes and Geometries. Analysis, Differential Calculus, and Optimization, Advances in Design and Control,", Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

3. Mohammadi, B. and O. Pironneau, Applied Shape Optimization for Fluids, Oxford University Press, 2001.

4. Braibant, V. and C. Fleury, "Shape optimal design using B-splines," Comput. Methods Appl. Mech. Engrg., Vol. 44, No. 3, 247-267, 1984.
doi:10.1016/0045-7825(84)90132-4

5. Olhoff, N., M. P. Bendsoe, and J. Rasmussen, "CAD-integrated structural topology and design optimization," Shape and Layout Optimization of Structural Systems and Optimality Criteria Methods, CISM Courses and Lectures, Vol. 325, 171-197, Springer, Vienna, 1992.

6. Nguyen, D. M., A. Evgrafov, A. R. Gersborg, and J. Gravesen, "Isogeometric shape optimization of vibrating membranes," Comput. Methods Appl. Mech. Engrg., Vol. 200, No. 13-16, 1343-1353, 2011.
doi:10.1016/j.cma.2010.12.015

7. Hughes, T., J. Cottrell, and Y. Bazilevs, "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement," Comput. Methods Appl. Mech. Engrg., Vol. 194, No. 39-41, 4135-4195, 2005.
doi:10.1016/j.cma.2004.10.008

8. Wall, W., M. Frenzel, and C. Cyron, "Isogeometric structural shape optimization," Comput. Methods Appl. Mech. Engrg., Vol. 197, No. 33-40, 2976-2988, 2008.
doi:10.1016/j.cma.2008.01.025

9. Cho, S. and S. H. Ha, "Isogeometric shape design optimization: Exact geometry and enhanced sensitivity," Struct. Multidiscip. Optim., Vol. 38, No. 1, 53-70, 2009.
doi:10.1007/s00158-008-0266-z

10. Nagy, A., M. Abdalla, and Z. Gurdal, "Isogeometric sizing and shape optimisation of beam structures," Comput. Methods Appl. Mech. Engrg., Vol. 199, No. 17-20, 1216-1230, 2010.
doi:10.1016/j.cma.2009.12.010

11. Qian, X., "Full analytical sensitivities in nurbs based isogeometric shape optimization," Comput. Methods Appl. Mech. Engrg., Vol. 199, No. 29-32, 2059-2071, 2010.
doi:10.1016/j.cma.2010.03.005

12. Seo, Y. D., H. J. Kim, and S. K. Youn, "Shape optimization and its extension to topological design based on isogeometric analysis," International Journal of Solids and Structures, Vol. 47, No. 11--12, 1618-1640, 2010.
doi:10.1016/j.ijsolstr.2010.03.004

13. Cottrell, J. A., Y. Bazilevs, and T. J. R. Hughes, Isogeometric Analysis: Toward Integration of CAD and FEA, J. Wiley, West Sussex, 2009.

14. Knupp, P. and S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Ranton, 1993.

15. Gravesen, J., A. Evgrafov, A. R. Gersborg, D. M. Nguyen, and P. N. Nielsen, "Isogeometric analysis and shape optimisation," Proceedings of NSCM-23: The 23rd Nordic Seminar on Computational Mechanics, Vol. 23, 14-17, 2010.

16. Aage, N., N. Mortensen, and O. Sigmund, "Topology optimization of metallic devices for microwave applications," International Journal for Numerical Methods in Engineering, Vol. 83, No. 2, 228-248, 2010.

17. Allaire, G., "Conception optimale de structures," Mathematiques et Applications, 58, Springer, 2007.

18. Bendse, M. and O. Sigmund, Topology Optimization. Theory, Methods and Applications, pringer-Verlag, Berlin, 2003.

19. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 2002.

20. dams, R., Sobolev Spaces. Pure and Applied Mathematics, 65, Academic Press, New York, London, 1975.

21. O., R. Taylor, The Finite Element Method, Vol. 1, The Basis, 5th Ed., Butterworth-Heinemann, Oxford, 2000.

22. Gravesen, J., "Differential geometry and design of shape and motion,", Department of Mathematics, Technical University of Denmark, 2002, URL: http://www2.mat.dtu.dk/people/J.Gravesen/cagd.pdf.

23. Piegl, L. and W. Tiller, The NURBS Book (Monographs in Visual Communication), Springer-Verlag, Berlin, 1995.

24. De Boor, C. and G. Fix, "Spline approximation by quasiinter-polants," J. Approximation Theory, Vol. 8, 19-45, 1973.
doi:10.1016/0021-9045(73)90029-4

25., MathWorks Inc., URL: http://www.mathworks.com.

26. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1964.

27. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 2005.

28., COMSOL Inc., URL: http://www.comsol.com.

29. Cheng, D. K., Fundamentals of Engineering Electromagnetics,, Addison-Wesley, Reading, Massachusetts, 1993.

30. Aage, N., Personal Communication, 2011.