Vol. 27
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-06
RCS Characterization of Stealth Target Using X2 Distribution and Lognormal Distribution
By
Progress In Electromagnetics Research M, Vol. 27, 1-10, 2012
Abstract
The radar backscatter from complex targets, such as aircrafts and ships, tends to vary rapidly with aspect or time. To describe the radar cross section distribution characteristics of such targets, statistic terms are often used. In this paper, we first give a brief introduction of distribution and lognormal distribution model. And complete form of lognormal distribution is proposed which can be used when ratio of mean to median is less than 1 as stealth targets. The significance of the parameters is discussed in detail aiming to find a characterization standard. As an example, the statistic characteristics of the radar cross section data of a stealth aircraft are analyzed with Swerling 1, 3 distribution, distribution and lognormal distribution. The applicability of the distributions is shown with error-of-fit and test of goodness of fit.
Citation
Weiqiang Shi, Xiao-Wei Shi, and Le Xu, "RCS Characterization of Stealth Target Using X2 Distribution and Lognormal Distribution," Progress In Electromagnetics Research M, Vol. 27, 1-10, 2012.
doi:10.2528/PIERM12091212
References

1. Pierce, R. D., "RCS characterization using the alpha-stable distribution," 1996 IEEE National Radar Conf., 154-159, Ann Arbor, Michigan, 1996.

2. Dowdy, P. C., "RCS probability distribution function modeling of a fluctuating target," 1991 IEEE Radar Conf., 164-168, Los Angeles, CA, 1991.

3. Weinstock, W. W., "Target cross section models for radar systems analysis,", Ph.D. Dissertation, University of Pennsylvania,Philadelphia, 1956.

4. Mayer, D. P. and H. A. Mayer, Radar Target Detection --- Handbook of Theory and Practice, Academic Press, New York, 1973.

5. Shnidman, D. A., "Expanded swerling target models," IEEE Trans. on Aerosp. Electron. Syst., Vol. 39, No. 3, 1059-1069, 2003.
doi:10.1109/TAES.2003.1238757

6. Huang, P. K., H. C. Yin, and X. J. Xu, Radar Target Properties, 20-120, Publishing House of Electronics Industry, 2006,(in Chinese).

7. Shi, F. Z., CAGD and NURBS, Higher Education Press, 2001 (in Chinese).

8. Zhao, Y., X.-W. Shi, and L. Xu, "Modeling with NURBS surfaces used for calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

9. Wu, Y., L. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308

10. Chen, M., Y. Zhang, and C. H. Liang, "Calculation of the field distribution near electrically large nurbs surfaces with physical-optics method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1511-1524, 2005.
doi:10.1163/156939305775701886

11. Li, J. B., X. S.Wang, and L. H. Qu, "Calculation of physical optics integral over NURBS surface using a delaminating quadrature method," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2388-2397, 2012.
doi:10.1109/TAP.2012.2189728

12. Hu, B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid PO-MoM analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301

13. Hemon, R., P. Pouliguen, H. He, J. Saillard, and J.-F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
doi:10.2528/PIER07110803

14. Kononov, A. A., A. Wyholt, G. Sandberg, and L. M. H. Ulander, "Statistical analysis of VHF-band tree backscattering using forest ground truth data and PO scattering model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 8, 3035-3046, 2011.
doi:10.1109/TGRS.2011.2116158

15. Teng, S. Z., "Mathematical Statistics," Press of DUT, Dalian, Jul. 2002 (in Chinese).