Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-22
Experimental Demonstration of Pulse Shaping for Time-Domain Microwave Breast Imaging
By
Progress In Electromagnetics Research, Vol. 133, 309-329, 2013
Abstract
We experimentally demonstrate a low-cost hardware technique for synthesizing a specific electromagnetic pulse shape to improve a time-domain microwave breast imaging system. A synthesized broadband reflector (SBR) filter structure is used to reshape a generic impulse to create an ad-hoc pulse with a specifically chosen frequency spectrum that improves the detection and imaging capabilities of our experimental system. The tailored pulse shape benefits the system by improving the level of signal detection after transmission through the breast and thus permits higher-resolution images. We report on our ability to use this technique to detect the presence of tumours in realistic breast phantoms composed of varying quantities of glandular tissue. Additionally, we provide a set of images based on this experimental data that demonstrates the increased effectiveness of the system using the SBR-shaped pulse in the localisation and identification of the embedded tumour.
Citation
Adam Santorelli, Magdalena Chudzik, Evgeny Kirshin, Emily Porter, Aintzane Lujambio, Israel Arnedo, Milica Popović, and Joshua D. Schwartz, "Experimental Demonstration of Pulse Shaping for Time-Domain Microwave Breast Imaging," Progress In Electromagnetics Research, Vol. 133, 309-329, 2013.
doi:10.2528/PIER12091008
References

1. Canadian Cancer Society "What is breast cancer?," Aug. 17, 2010, Online Available: http://www.cancer.ca/.

2. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, 12-18, Feb./Mar. 2003.
doi:10.1109/MP.2003.1180933

3. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, Jun. 2009.
doi:10.1109/TAP.2009.2019856

4. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection --- Experimental investigation of simple tumor models," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3312-3319, Nov. 2005.
doi:10.1109/TMTT.2005.857330

5. Xu, L., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, Aug. 2004.
doi:10.1109/TMTT.2004.832686

6. Porter, E., A. Santorelli, M. Coates, and M. Popovic, "An experimental system for time-domain microwave breast imaging," Proc. 5th European Conference on Antennas and Propagation (EUCAP 2011), Rome, Italy, Apr. 11-15, 2011.

7. Porter, E., A. Santorelli, M. Coates, and M. Popovic, "Microwave breast imaging: Time-domain experiments on tissue phantoms," Proc. 2011 IEEE International Symposium on Antennas and Propagation (AP-S 2011), Spokane, Washington, USA, Jul. 3-8, 2011.

8. Arnedo, I., M. A. G. Laso, F. Falcone, D. Benito, and T. Lopetegi, "A series solution for the single mode synthesis problem based on the coupled mode theory," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 2, 457-466, Feb. 2008.
doi:10.1109/TMTT.2007.914628

9. Chudzik, M., I. Arnedo, I. Arregui, A. Lujambio, M. A. G. Laso, D. Benito, and T. Lopetegi, "Synthesis technique for microwave circuits based on inverse scattering: E±cient algorithm implementation and application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, No. 2, 163-174, 2011.
doi:10.1002/mmce.20500

10. Arnedo, I., J. D. Schwartz, M. A. G. Laso, T. Lopetegi, D. V. Plant, and J. Azaa, "Passive microwave planar circuits for arbitrary UWB pulse shaping," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 452-454, Jul. 2008.
doi:10.1109/LMWC.2008.924924

11. IEEE Std C95.1-1999 "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," IEEE Press, Piscataway, NJ, 1999.

12. Porter, E., J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, "Improved tissue phantoms for experimental validation of microwave breast cancer detection," Proc. 4th European Conference on Antennas and Propagation (EUCAP 2010), 1-5, Apr. 12-16, 2010.

13. Porter, E., E., A. Santorelli, D. Coulibaly, M. Coates, and M. Popovic, "Time-domain microwave breast screening system: Testing with advanced realistic breast phantoms," Proc. 6th European Conference on Antennas and Propagation (EUCAP 2012), 1766-1769, Mar. 26-30, 2012.

14. Porter, E., A. Santorelli, A. Bourdon, D. Coulibaly, M. Coates, and M. Popovic, "Time-domain microwave breast cancer detection: Experiments with comprehensive glandular phantoms," 2011 Asia-Paci¯c Microwave Conference Proceedings (APMC), 203-206, Dec. 5-8, 2011.

15. Kanj, H. and M. Popovic, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
doi:10.2528/PIER08090701

16. Pozar, D. M., "Microwave Engineering," Addison-Wesley, Reading, MA, 1998.

17. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Breast cancer detection based on differential ultrawideband microwave radar," Progress In Electromagnetics Research M, Vol. 20, 231-242, 2011.
doi:10.2528/PIERM11080810

18. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "UWB microwave imaging for breast cancer detection --- Experiments with heterogeneous breast phantoms," Progress In Electromagnetics Research M, Vol. 16, 19-29, 2011.

19. Santorelli, A., Breast screening with custom-shaped pulsed microwaves, Master's Thesis, Department of Electrical and Computer Engineering, McGill University, Montreal, Canada, 2012.

20. Fear, E. C., X. Li, S. Hagness, and M. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of umors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, 812-822, Aug. 2002.
doi:10.1109/TBME.2002.800759

21. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering,, Vol. 55, No. 6, 1697-1704, Jun. 2008.
doi:10.1109/TBME.2008.919716