Vol. 45
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-10-29
Absorbing Cross Section in Reverberation Chamber: Experimental and Numerical Results
By
Progress In Electromagnetics Research B, Vol. 45, 187-202, 2012
Abstract
Reverberation chamber (RC) test facility allows to determine the absorbing cross section (ACS) of lossy materials under a random field excitation. Measurements are based on the quality factor variation produced by the sample under test presence with respect to the empty chamber condition. Simulations are based on the representation of the RC electromagnetic field by means of a random plane wave superposition. A finite-difference time-domain code is used to compute the material absorbed power and to recover a numerical ACS. The method sensibility is stressed by application to small size samples. Comparison between numerical and experimental data reveals a satisfactory agreement. Results for different materials are presented in the paper: soft foam absorbers, carbon foam sheets, and carbon/carbon sheets.
Citation
Gabriele Gradoni, Davide Micheli, Franco Moglie, and Valter Mariani Primiani, "Absorbing Cross Section in Reverberation Chamber: Experimental and Numerical Results," Progress In Electromagnetics Research B, Vol. 45, 187-202, 2012.
doi:10.2528/PIERB12090801
References

1. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements,", Tech. Rep. 1341, NIST, Boulder, CO, USA, 1990.
doi:10.1109/TIM.1970.4313932

2. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.2528/PIER10101208

3. Hasar, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.
doi:10.1109/TMTT.2006.881023

4. Lonnqvist, A., A. Tamminen, J. Mallat, and A. V. Raisanen, "Monostatic reflectivity measurement of radar absorbing materials at 310 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 9, 3486-3491, 2006.
doi:10.1109/MAP.2008.4562276

5. Collard, G. and Y. Arien, "Recent microwave absorber wall-re°ectivity measurement methods," IEEE Antennas and Propagation Magazine, Vol. 50, No. 2, 140-147, 2008.
doi:10.2528/PIERL11082211

6. Escot-Bocanegra, D., D. Poyatos-Martnez, I. Montiel-Sanchez, F. M. Saez de Adana, and I. Gonzalez-Diego, "Spherical indoor facility applied to bistatic radar cross section measurements," Progress In Electromagnetics Research Letters, Vol. 26, 181-187, 2011.
doi:10.1109/TMTT.2011.2160198

7. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. Mariani Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2633-2646, 2011.
doi:10.1016/j.compscitech.2009.11.015

8. Micheli, D., C. Apollo, R. Pastore, and M. Marchetti, "X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation," Composites Science and Technology, Vol. 70, No. 2, 400-409, 2010.
doi:10.1109/15.709418

9. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 209-217, 1998.
doi:10.2528/PIERC11122702

10. Sorrentino, A., L. Mascolo, G. Ferrara, M. Migliaccio, and , "The fractal nature of the electromagnetic field within a reverberating chamber," Progress In Electromagnetics Research C, Vol. 27, 157-167, 2012.
doi:10.1109/TEMC.2011.2106789

11. Moglie, F. and V. Mariani Primiani, "Analysis of the independent positions of reverberation chamber stirrers as a function of their operating conditions," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 288-295, 2011.
doi:10.1109/TEMC.2012.2186303

12. Moglie, F. and V. Mariani Primiani, "Numerical analysis of a new location for the working volume inside a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 238-245, 2012.
doi:10.2528/PIER09121610

13. Hong, J.-I. and C.-S. Huh, "Optimization of stirrer with various parameters in reverberation chamber," Progress In Electromagnetics Research, Vol. 104, 15-30, 2010.
doi:10.1109/TEMC.2010.2100823

14. Remley, K. A., S. J. Floris, H. A. Shah, and C. L. Holloway, "Static and dynamic propagation-channel impairments in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 3, 589-599, 2011.

15. Centeno, A. and N. Alford, "Measurement of zigbee wireless communications in mode-stirred and mode-tuned reverberation chamber," Progress In Electromagnetics Research M, Vol. 18, 171-178, 2011.

16. Staniec, K. and A. J. Pomianek, "On simulating the radio signal propagation in the reverberation chamber with the ray launching method," Progress In Electromagnetics Research B, Vol. 27, 83-99, 2011.
doi:10.2528/PIER10022605

17. Pomianek, A. J., K. Staniec, and Z. Joskiewicz, "Practical remarks on measurement and simulation methods to emulate the wireless channel in the reverberation chamber," Progress In Electromagnetics Research, Vol. 105, 49-69, 2010.
doi:10.1163/156939310793675600

18. Mariani Primiani, V. and F. Moglie, "Numerical simulation of LOS and NLOS conditions for an antenna inside a reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2319-2331, 2010.
doi:10.2528/PIERB10062313

19. Lallechμere, S., S. Girard, D. Roux, P. Bonnet, F. Paladian, and A. Vian, "Mode stirred reverberation chamber (MSRC): A large and e±cient tool to lead high frequency bioelectromagnetic in vitro experimentation," Progress In Electromagnetics Research B, Vol. 26, 257-290, 2010.
doi:10.2528/PIERB11022506

20. Moglie, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.1109/TEMC.2003.809117

21. Holloway, C. L., D. A. Hill, J. Ladbury, G. Koepke, and R. Garzia, "Shielding e?ectiveness measurements of materials using nested reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 350-356, 2003.
doi:10.1109/TEMC.2009.2032650

22. Mariani Primiani, V., F. Moglie, and A. P. Pastore, "Field penetration through a wire mesh screen excited by a reverberation chamber fiqgeld: FDTD analysis and experiments," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 4, 883-891, 2009.

23. Mansson, D. and A. Ellgardt, "Comparing analytical and numerical calculations of shielding effectiveness of planar metallic meshes with measurements in cascaded reverberation chambers," Progress In Electromagnetics Research C, Vol. 31, 123-135, 2012.
doi:10.1109/TEMC.2006.870793

24. Moglie, F. and A. P. Pastore, "FDTD analysis of plane waves superposition to simulate susceptibility tests in reverberation chambers," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 195-202, 2006.
doi:10.1109/TEMC.2011.2167337

25. Mariani Primiani, V. and F. Moglie, "Numerical simulation of reverberation chamber parameters affecting the received power statistics," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, 522-532, 2012.
doi:10.1109/TEMC.2009.2013456

26. Fedeli, D., G. Gradoni, V. Mariani Primiani, and F. Moglie, "Accurate analysis of reverberation field penetration into an equipment-level enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 2, 170-180, 2009.
doi:10.1109/TEMC.2006.870805

27. Gradoni, G., F. Moglie, A. P. Pastore, V. Mariani Primiani, and , "Numerical and experimental analysis of the field to enclosure coupling in reverberation chamber and comparison with anechoic chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 1, 203-211, 2006.
doi:10.1109/TEMC.2011.2170692

28. West, J. C., C. F. Bunting, and V. Rajamani, "Accurate and efficient numerical simulation of the random environment within an ideal reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 1, 167-173, 2012.
doi:10.1109/TAP.2012.2194677

29. Zhao, H. and Z. Shen, "Memory-efficient modeling of reverberation chambers using hybrid recursive update discrete singular convolution-method of moments," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2781-2789, 2012.
doi:10.1109/TEMC.2004.826878

30. Carlberg , U., P.-S. Kildal, A. Wolfgang, O. Sotoudeh, and C. Orlenius, "Calculated and measured absorption cross sections of lossy objects in reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 2, 146-154, 2004.

31. Amador, E., M. Andries, C. Lemoine, and P. Besnier, "Absorbing material characterization in a reverberation chamber," EMC Europe 2011 York, 117-122, 2011.

32. El Baba, I., S. Lallechµere, and P. Bonnet, "Numerical total scattering cross section from reverberating electromagnetic experiments," Progress In Electromagnetics Research Letters, Vol. 19, 127-135, 2010.
doi:10.1109/TEMC.2009.2033576

33. Gifuni, A., "On the measurement of the absorption cross section and material reflectivity in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 4, 1047-1050, 2009.

34. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, 2000.
doi:10.1049/ip-smt:20060014

35. Cerri, G., R. De Leo, V. Mariani Primiani, and F. Moglie, "Theoretical and experimental analysis of the field-to-line coupling in a reverberation chamber," IEE Proceedings on Science, Measurement and Technology, Vol. 153, No. 5, 201-207, 2006.

36. Weisstein, E. W., "Sphere point picking,", MathWorld --- A Wolf-ram Web Resource, http://mathworld.wolfram.com/SpherePoint-Picking.html, 2012.

37. International Standards --- IEC 61000-4-21 "Electromagnetic compatibility (EMC) | Part 4-21: Testing and Measurement Techniques | Reverberation Chamber Test Methods,".

38. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.
doi:10.1016/j.carbon.2011.12.053

39. Moglie, F., D. Micheli, S. Laurenzi, M. Marchetti, and V. Mariani Primiani, "Electromagnetic shielding performance of carbon foams," Carbon, Vol. 50, No. 5, 1972-1980, 2012.