Vol. 36
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-12-03
Optimization Towards Broadband Cylindrical Cloaks with Layered Magnetic Materials
By
Progress In Electromagnetics Research Letters, Vol. 36, 87-101, 2013
Abstract
Inhomogeneous anisotropic cloaks can be approximated by more realizable homogeneous and isotropic material layers at the expense of their bandwidth and angular dependence. Aiming at applications to a monostatic Radar, we propose a scheme to design broadband cylindrical cloaks with minimized backscattering RCS. The cloak is composed of a few layers of concentric magnetic materials, with optimized parameters using a genetic algorithm (GA). We also examine extensively the parameters in the optimization, including the initial population and the relationship of required discretization with the operation frequency. It has been demonstrated that, through a proper designed optimization, the bandwidth can exceed 80% for non-dispersive cloaks and 4% for dispersive cloaks.
Citation
Wei Song, Rui-Jing Shi, and Xin-Qing Sheng, "Optimization Towards Broadband Cylindrical Cloaks with Layered Magnetic Materials," Progress In Electromagnetics Research Letters, Vol. 36, 87-101, 2013.
doi:10.2528/PIERL12090405
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-Euclidean cloaking," Science, Vol. 323, 110-112, 2009.
doi:10.1126/science.1166332

3. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulation of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621

4. Zhao, Y., C. Argyropoulos, and Y. Hao, "Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures," Opt. Express, Vol. 16, 6717-6730, 2008.
doi:10.1364/OE.16.006717

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

6. Cai, W. S., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224, 2007.
doi:10.1038/nphoton.2007.28

7. Huang, Y., Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express, Vol. 15, , 11133-11141, 2007.
doi:10.1364/OE.15.011133

8. Jiang, W. X., J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E, Vol. 77, 066607, 2008.
doi:10.1103/PhysRevE.77.066607

9. Hu, J., X. M. Zhou, and G. K. Hu, "Nonsingular two dimensional cloak of arbitrary shape," Appl. Phys. Lett., Vol. 95, 011107, 2009.
doi:10.1063/1.3168652

10. Kohn, R. V., H. Shen, M. S. Vogelius, and M. I. Weinstein, "Cloaking via change of variables in electric impedance tomography," Inverse Problems, Vol. 24, 15016, 2008.
doi:10.1088/0266-5611/24/1/015016

11. Isic, G., R. Gajic, B. Novakovic, Z. V. Popovic, and K. Hingerl, "Radiation and scattering from imperfect cylindrical electromagnetic cloaks," Opt. Express, Vol. 16, 1413-1422, 2008.
doi:10.1364/OE.16.001413

12. Liu, H. Y., "Virtual reshaping and invisibility in obstacle scattering," Inverse Problems, Vol. 25, 045006, 2009.
doi:10.1088/0266-5611/25/4/045006

13. Li, J., H. Y. Liu, and H. Sun, "Enhanced approximate cloaking by SH and FSH lining," Inverse Problems, Vol. 28, 075011, 2012.
doi:10.1088/0266-5611/28/7/075011

14. Liu, H. Y. and T. Zhou, "On approximate electromagnetic cloaking by transformation media," SIAM J. Appl. Math., Vol. 71, 218-241, 2011.
doi:10.1137/10081112X

15. Song, W. and X.-Q. Sheng, "A cloak scheme insusceptible to the change of material properties," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 149-160, 2012.
doi:10.1163/156939312800030758

16. Song, W., X.-H. Yang, and X.-Q. Sheng, "Scattering characteristics of 2-D imperfect cloaks with layered isotropic materials," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 53-56, 2012.
doi:10.1109/LAWP.2011.2182590

17. Jiang, W. X., T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, "Invisibility cloak without singularity," Appl. Phys. Lett., Vol. 93, 194102, 2008.
doi:10.1063/1.3026532

18. Yan, W., M. Yan, and M. Qiu, "Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering," Appl. Phys. Lett., Vol. 93, 021909, 2008.
doi:10.1063/1.2958344

19. Popa, B.-I. and S. A. Cummer, "Cloaking with optimized homogeneous anisotropic layers," Phys. Rev. A, Vol. 79, 023806, 2009.
doi:10.1103/PhysRevA.79.023806

20. Xi, S., H. S. Chen, B. Zhang, B.-I. Wu, and J. A. Kong, "Route to low-scattering cylindrical cloaks with finite permittivity and permeability," Phys. Rev. B, Vol. 79, 155122, 2009.
doi:10.1103/PhysRevB.79.155122

21. Ivsic, B., T. Komljenovic, and Z. Sipus, "Optimization of uniaxial multilayer cylinders used for invisible cloak realization," IEEE Trans. on Antennas and Propagation, Vol. 58, 3397-340, 2010.
doi:10.1109/TAP.2010.2055789

22. Ivsic, B., T. Komljenovic, and Z. Sipus, "Performance of uniaxial multilayer cylinders and spheres used for invisible cloak realization," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 1092-1096, 2012.

23. Yao, H.-Y., C.-W. Qiu, and L.-W. Li, "Scattering characteristics rom conducting cylinder with reconstructing electromagnetic cloaking layers," Asia Pacific Microwave Conference, APMC, 2009.

24. Qiu, C.-W., L. Hu, X. F. Xu, and Y. J. Feng, "Spherical cloaking with homogeneous isotropic multilayered structures," Phys. Rev. E, Vol. 79, 047602, 2009.
doi:10.1103/PhysRevE.79.047602

25. Danaeifar, M., M. Kamyab, A. Jafargholi, and M. Veysi, "Bandwidth enhancement of a class of cloaks incorporating metamaterials," Progress In Electromagnetics Research Letters, Vol. 28, 37-44, 2012.
doi:10.2528/PIERL11093005

26. Martins, T. C. and V. Dmitriev, "Spherical invisibility cloak with minimum number of layers of isotropic materials," Microwave and Optical Technology Lett., Vol. 54, 2217-2220, 2012.
doi:10.1002/mop.27024

27. Yu, Z. Z., Y. J. Feng, X. F. Xu, J. M. Zhao, and T. Jiang, "Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials," J. Phys. D: Appl. Phys., Vol. 44, 185102, 2011.
doi:10.1088/0022-3727/44/18/185102

28. Peng, L., L. Ran, and N. A. Mortensen, "The scattering of a cylindrical invisibility cloak: Reduced parameters and optimization," J. Phys. D: Appl. Phys., Vol. 44, 135101, 2011.
doi:10.1088/0022-3727/44/13/135101

29. Chew, W. C., Waves and Fields in Inhomogeneous Media, 2nd Ed., IEEE, 1995.

30. Pendry, J. B., A. Holden, J. D. Robbins, and J. W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

31. Hrabar, S., L. Benic, and J. Bartolic, "Simple experimental determinationof complex permittivity or complex permeability of SNG metamaterials," Proc. 36th Eur. Microwave Conf., 1395-1398, Manchester, UK, 2006.

32. Hrabar, S., N. Engheta, and R. Ziolkowsky, "Waveguide experi-ments to characterize the properties of SNG and DNG metamaterials," Metamaterials: Physics and Engineering Explorations, Ch. 3, Wiley and IEEE, Hoboken/Piscataway, NJ,2006.

33. Goldman, A., Modern Ferrite Technology, 2nd Ed., Ch. 15, Springer, Pittsburgh, PA, USA, 2006.