Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-18
Hybrid Computational Scheme for Antenna-Human Body Interaction
By
Progress In Electromagnetics Research, Vol. 133, 117-136, 2013
Abstract
A new hybrid method of moments (MoM)/finite-difference time-domain (FDTD), with a sub-gridded finite-difference time-domain (SGFDTD) approach is presented. The method overcomes the drawbacks of homogeneous MoM and FDTD simulations, and so permits accurate analysis of realistic applications. As a demonstration, it is applied to the short-range interaction between an inhomogeneous human body and a small UHF RFID antenna tag, operating at 900 MHz. Near-field and far-field performance for the antenna are assessed for different placements over the body. The cumulative distribution function of the radiation efficiency and the absorbed power are presented and analyzed. The algorithm has a five-fold speed advantage over fine-gridded FDTD.
Citation
Khairun Nidzam Ramli, Raed A. Abd-Alhameed, Chan Hwang See, Peter S. Excell, and James M. Noras, "Hybrid Computational Scheme for Antenna-Human Body Interaction," Progress In Electromagnetics Research, Vol. 133, 117-136, 2013.
doi:10.2528/PIER12082209
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 8, 302-307, May 1966.

2. Taflove, A., "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems," IEEE Trans. Electromagnetic Compatibility, Vol. 22, No. 3, 191-202, Aug. 1980.
doi:10.1109/TEMC.1980.303879

3. Kawai, H. and K. Ito, "Simple evaluation method of estimating local average SAR," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 2021-2029, Aug. 2004.
doi:10.1109/TMTT.2004.832028

4. Fujii, K., M. Takahashi, and K. Ito, "Electric field distributions of wearable devices using the human body as a transmission channel," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 7, 2080-2087, Jul. 2007.
doi:10.1109/TAP.2007.900226

5. Jung, J.-H., S.-W. Kim, Y.-S. Kim, and S.-Y. Kim, "Electromagnetic propagation from the intestine-ingested source in the human body model," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 5, 1683-1688, May 2010.
doi:10.1109/TAP.2010.2044338

6. Emili, G., A. Schiavoni, F. L. Roselli, and R. Sorrentino, "Computation of electromagnetic field inside a tissue at mobile communications frequencies," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 1, 178-186, Jan. 2003.
doi:10.1109/TMTT.2002.806899

7. See, C. H., R. A. Abd-Alhameed, and P. S. Excell, "Computation of electromagnetic fields in assemblages of biological cells using a modified finite-difference time-domain scheme," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1986-1994, Sep. 2007.
doi:10.1109/TMTT.2007.904064

8. Monk, P. and E. Suli, "Error estimates for Yee's method on nonuniform grids," IEEE Trans. Magn., Vol. 30, No. 5, 3200-3203, Sep. 1994.
doi:10.1109/20.312618

9. Aoyagi, P. H., J. F. Lee, and R. Mittra, "A hybrid Yee algorithm/scalar-wave equation approach," IEEE Trans. Microw. Theory Tech., Vol. 41, 1593-1600, 1993.
doi:10.1109/22.245683

10. Cangellaris, A. C., M. Gribbons, and G. Sohos, "A hybrid spectral/FDTD method for the electromagnetic analysis of guided waves in periodic structures," IEEE Transactions Guided Wave Letters, Vol. 3, 375-377, 1993.
doi:10.1109/75.242266

11. Wang, Y., S. K. Chaudhuri, and S. Safavi-Naeini, "An FDTD/ray-tracing analysis method for wave penetration through inhomogeneous walls," IEEE Transactions on Antennas and Propagations, Vol. 50, 1598-1604, 2002.
doi:10.1109/TAP.2002.802157

12. Mrozowski, M., "A hybrid PEE-FDTD algorithm for accelerated time domain analysis of electromagnetic waves in shielded structures," IEEE Microwave Guided Wave Letters, Vol. 4, 323-325, 1994.
doi:10.1109/75.324704

13. Monorchio, A. and R. Mittra, "Time-domain (FE/FDTD) technique for solving complex electromagnetic problems," IEEE Microwave Guided Wave Letters, Vol. 8, 93-95, 1998.
doi:10.1109/75.658652

14. Fierriers, X., J.-P. Parmantier, S. Bertuol, and A. R. Ruddle, "Application of hybrid finite difference/finite volume method to solve an automotive EMC problem," IEEE Transactions on Electromagnetic Compatibility, Vol. 4, 624-634, 2004.
doi:10.1109/TEMC.2004.837837

15. Cerri, G., P. Russo, A. Schiavoni, G. Tribellini, and P. Bielli, "MoM-FDTD hybrid technique for analysing scattering problems," Electronic Letters, Vol. 34, 433-440, 1998.
doi:10.1049/el:19980394

16. Bretones, A. R., A. Monorchio, G. Manara, R. G. Martin, and R. Mittra, "Hybrid technique combining finite element, finite difference and integral equation methods in the time domain," Electronic Letters, Vol. 36, 506-508, 2000.
doi:10.1049/el:20000466

17. Tinniswood, A. D., Time domain integral equations, Ph.D. Dissertation, University of York, 1996.

18. Taflove, A. and K. R. Umashankar, "A hybrid moment method/finite difference time-domain approach to electromagnetic coupling and aperture penetration into complex geometries," IEEE Trans. on Antennas and Propagation, Vol. 30, 617-627, 1982.
doi:10.1109/TAP.1982.1142860

19. Umashankar, K. R., A. Taflove, and B. Beker, "Calculation and experimental validation of induced currents on coupled wires in an arbitrary shape cavity," IEEE Trans. on Antennas and Propagation, Vol. 35, 1248-1257, 1987.
doi:10.1109/TAP.1987.1144000

20. Coffey, E. L. and D. L. Kadlec, "General electromagnetic model for the analysis of complex systems (GEMACS) version 5.0," Advanced Electromagnetic Corporation for USAF Rome Air Development Center (USA), Report No. RADC-TR-90-360, Vol. I-III, 1990.

21. Mangoud, M. A., R. A. Abd-Alhameed, and P. S. Excell, "Simulation of human interaction with mobile telephones using Hybrid techniques over coupled domains," IEEE Trans. Microw. Theory Tech., Vol. 48, 2014-2021, 2000.

22. Monorchio, A., A. R. Bretones, R. Mittra, G. Manara, and R. G. Martin, "A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems ," IEEE Trans. on Antennas and Propagation, Vol. 52, 2666-2674, 2004.
doi:10.1109/TAP.2004.834431

23. Alias, R., R. A. Abd-Alhameed, P. S. Excell, and Q. Gassim, "A modified equivalent conducting surface boundary using the hybrid FEM-FDTD technique," 8th IEEE International Multi-topic Conference (INMIC2004), NUCES FAST, Lahore, Pakistan, 698-702, Dec. 24-26, 2004.

24. Akyurtlu, A., D. H. Werner, V. Veremey, D. J. Steich, and K. Avdin, "Staircasing errors in FDTD at an air-dielectric interface," IEEE Microwave Guided Wave Letters, Vol. 9, 444-446, 1999.
doi:10.1109/75.808028

25. Abd-Alhameed, R. A., P. S. Excell, and M. A. Mangoud, "Broadband antenna response using hybrid technique combining frequency domain MoM and FDTD," Eleventh International Conference on Antennas and Propagation, Vol. 20, 857-860, 2001.
doi:10.1049/cp:20010417

26. Alhaddad, A. G., R. A. Abd-Alhameed, D. Zhou, C. H. See, I. T. E. Elfergani, and P. S. Excell, "Low profile dual-band balanced handset antenna with dual-arm structure for WLAN application," IET Microwaves, Antennas & Propagation, Vol. 5, 1045-1053, Jun. 2011.
doi:10.1049/iet-map.2010.0219

27. Ramli, K. N., R. A. Abd-Alhameed, Y. A. S. Dama, M. S. A. Alkhambashi, M. B. Child, and P. S. Excell, "Interaction of EM fields to the human body using MoM-FDTD-SGFDTD hybrid computational method," EMC Europe, 26-30, York, UK, Sep. 1-4, 2011.

28. Abd-Alhameed, R. A., P. S. Excell, C. H. See, D. Zhou, and K. N. Ramli, "Accurate field distribution models for RFID applications using hybrid computational electromagnetics techniques," PIERS Proceedings, 436-442, Cambridge, USA, Jul. 2-6, 2008.

29. Kajiwara, S., A. Yamamoto, K. Ogawa, A. Ozaki, and Y. Koyanagi, "Attenuation characteristics of the SAR in a COST244 phantom with different EM source locations and size," Proceeding of ISAP'04, 793-796, Sendai, Japan, 2004.

30. Burke, G. J. and A. J. Poggio, Numerical Electromagnetics Code (NEC): Method of Moments, US Naval Ocean Systems Centre, Rep. No. TD116, 1981.

31. Mason, P. A., W. D. Hurt, T. J. Walters, J. A. D'Andrea, P. Gajsek, K. L. Ryan, D. A. Nelson, K. I. Smith, and J. M. Ziriax, "Effects of frequency, permittivity, and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 11, 2050-2058, Nov. 2000.