1. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 5700, 1353-1355, 2004.
doi:10.1126/science.1104467
2. Andres-Garcia, B., L. E. Garcia-Munoz, V. Gonzalez-Posadas, F. J. Herraiz-Martinez, and D. Segovia-Vargas, "Filtering lens structure based on SRRs in the low THz band," Progress In Electromagnetics Research, Vol. 93, 71-90, 2009.
doi:10.2528/PIER09040105
3. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
5. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and experimental realization of a broadband transformation media field rotator at microwave frequencies," Physical Review Letters, Vol. 102, No. 18, 183903(3), 2009.
doi:10.1103/PhysRevLett.102.183903
6. Lim, C. C. S. and T. Itoh, "A reflecto-directive system using a composite right/left-handed (CRLH) leaky-wave antenna and hetero-dyne mixing," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 183-185, 2004.
doi:10.1109/LMWC.2004.827107
7. Attia, H., M. M. Bait-Suwailam, O. M. Ramahi, and A. Electromagnet, "Enhanced gain planar inverted-F antenna with metamaterial superstrate for UMTS applications," PIERS Online, Vol. 6, No. 6, 585-588, 2010.
doi:10.2529/PIERS100422003051
8. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter utilizing complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.
9. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902:1-4, 2002.
doi:10.1103/PhysRevLett.89.213902
10. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E --- Statistical, Nonlinear, and Soft Matter Physics, Vol. 70, No. 42, 046608-1, 2004.
11. Wu, Q., P. Pan, F.-Y. Meng, L.-W. Li, and J. Wu, "A novel °at lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A --- Materials Science and Processing, Vol. 87, No. 2, 151-156, 2007.
doi:10.1007/s00339-006-3820-9
12. Xiao, Z. and H. Xu, "Low refractive metamaterials for gain enhancement of horn antenna," Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, 225-232, 2009.
doi:10.1007/s10762-008-9449-3
13. Kim, D. and J. Choi, "Analysis of antenna gain enhancement with a new planar metamaterial superstrate: An effective medium and a Fabry-Pérot resonance approach ," Journal of Infrared Millimeter and Terahertz Waves, Vol. 31, No. 11, 1289-1303, 2010.
doi:10.1007/s10762-010-9712-2
14. Hrabar, S., D. Bonefacic, and D. Muha, "ENZ-based shortened horn antenna --- An experimental study," Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, United States, 2008.
15. Ju, J., D. Kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Technology Letters, Vol. 51, No. 8, 1973-1976, 2009.
doi:10.1002/mop.24469
16. Cheng, Q. A., W. X. Jiang, and T. J. Cui, "Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials," Journal of Physics D-Applied Physics, Vol. 43, No. 33, 335446(6), 2010.
doi:10.1088/0022-3727/43/33/335406
17. Ma, Y. G., P. Wang, X. Chen, and C. K. Ong, "Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial," Applied Physics Letters, Vol. 94, No. 4, 044107(3), 2009.
doi:10.1063/1.3077128
18. Jiang, Z. H. and D. H. Werner, "Anisotropic metamaterial lens with a monopole feed for high-gain multi-beam radiation," 2011 IEEE International Symposium on Antennas and Propagation, 1346-1349, 2011.
19. Weng, Z. B., Y. C. Jiao, G. Zhao, and F. S. Zhang, "Design and experiment of one dimension and two dimension metamaterial structures for directive emission," Progress In Electromagnetics Research, Vol. 70, 199-209, 2007.
doi:10.2528/PIER07010301
20. Weng, Z. B., X. M. Wang, Y. Song, Y. C. Jiao, and F. S. Zhang, "A directive patch antenna with arbitrary ring aperture lattice metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1283-1291, 2008.
doi:10.1163/156939308784158670
21. Sauleau, R., P. Coquet, T. Matsui, and J. P. Daniel, "A new concept of focusing antennas using plane-parallel Fabry-Pérot cavities with nonuniform mirrors, ," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 11, 3171-3175, 2003.
doi:10.1109/TAP.2003.818795
22. Smith, D. R., S. Schultz, S. L. McCall, and P. M. Platzmann, "Defect studies in a 2-dimensional periodic photonic lattice," Journal of Modern Optics, Vol. 41, No. 2, 395-404, 1994.
doi:10.1080/09500349414550401
23. Kaklamani, D. I., "Full-wave analysis of a Fabry-Pérot type resonator," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1627-1634, 1999.
doi:10.1163/156939399X00024
24. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
25. Wu, Q., J. P. Turpin, D. H. Werner, and E. Lier, "Thin metamaterial lens for directive radiation," 2011 IEEE International Symposium on Antennas and Propagation, 2886-2889, Spokane, WA, 2011.
26. Turpin, J. P., Q. Wu, D. H. Werner, E. Lier, B. Martin, and M. Bray, "Anisotropic metamaterial realization of a flat gain-enhancing lens for antenna applications," 2011 IEEE International Symposium on Antennas and Propagation, 2882-2885, 2011.
27. Mei, Z. L., J. Bai, T. M. Niu, and T. J. Cui, "A half Maxwell fish-eye lens antenna based on gradient-index metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 398-401, 2012.
doi:10.1109/TAP.2011.2167914
28. Zhang, Y., R. Mittra, and W. Hong, "On the synthesis of a °at lens using a wideband low-refraction gradient-index metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2178-2187, 2011.
doi:10.1163/156939311798147015
29. Neu, J., B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, "Metamaterial-based gradient index lens with strong focusing in the THz frequency range," Optics Express, Vol. 18, No. 26, 27748-27757, 2010.
doi:10.1364/OE.18.027748
30. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773
31. Tang, Q., F.-Y. Meng, Q. Wu, and J.-C. Lee, "A balanced composite backward and forward compact waveguide based on resonant metamaterials," Journal of Applied Physics, Vol. 109, No. 7, 07A319(3), 2011.
32. Meng, F.-Y., Q. Wu, D. Erni, and L.-W. Li, "Controllable metamaterial-loaded waveguides supporting backward and forward waves," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3400-3411, 2011.
doi:10.1109/TAP.2011.2161540
33. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622
34. Goncharenko, A. V. and K. R. Chen, "Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range," Journal of Nanophotonics, Vol. 4, No. 1, 041530, 2010.
doi:10.1117/1.3332833
35. Hrabar, S., I. Krois, I. Bonic, and A. Kiricenko, "Negative capacitor paves the way to ultra-broadband metamaterials," Applied Physics Letters, Vol. 99, No. 25, 254103(3), 2011.
doi:10.1063/1.3671366
36. Sun, L. and K. W. Yu, "Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media," Applied Physics Letters, Vol. 100, No. 26, 261903(3), 2012.
doi:10.1063/1.4730380