Vol. 132
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-05
Kalman Filter for Removal of Scalloping and Inter-Scan Banding in Scansar Images
By
Progress In Electromagnetics Research, Vol. 132, 443-461, 2012
Abstract
Spaceborne synthetic aperture radar (SAR) plays more and more important role in Earth observation science, especially with ScanSAR mode which provides wide-swath coverage with moderate resolution. However, scalloping and inter-scan banding (ISB) are two major artifacts, which signi cantly degrade the quality of ScanSAR images. In this paper, a novel technique for removal of scalloping and ISB in ScanSAR images is proposed. Scalloping and ISB artifacts are modeled by two-dimensional gain and o set parameters varying as function of both azimuth time and range position. The gain and o set parameters can be split into azimuth and range components. The variations of gain/o set with respect to azimuth and range positions would represent scalloping and ISB artifacts respectively. In the proposed technique, recursive and minimum mean square error (MMSE) estimates of azimuth gain/o set parameters are found out by using Kalman lter for each azimuth location in a subswath by considering corresponding range samples as observation vector. Subsequently, range gain/o set parameters causing ISB artifacts are estimated by using Kalman lter for each range positions by considering azimuth samples as observation vector. The MMSE estimates of gain/o set parameters are used to directly remove scalloping and ISB artifacts. The proposed scheme was applied on simulated as well as calibrated real ScanSAR images. The experimental results exhibited the potential of proposed technique to be used as post processing tool for enhancing ScanSAR image quality.
Citation
Mahboob Iqbal, Jie Chen, Wei Yang, Pengbo Wang, and Bing Sun, "Kalman Filter for Removal of Scalloping and Inter-Scan Banding in Scansar Images," Progress In Electromagnetics Research, Vol. 132, 443-461, 2012.
doi:10.2528/PIER12082107
References

1. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth nlcs principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110

2. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
doi:10.2528/PIER11121101

3. Koo, V. C., Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim, C.-S. Lim, C. C. Thum, T. S. Lim, Z. bin Ahmad, K. A. Mahmood, M. H. Bin Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

4. Zhu, D.-Y., B. Tian, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

5. Ismail, A., M. Mohammadpoor, R. S. A. Raja Abdullah, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

6. Park, J.-I. and K.-T. Kim, "A comparative study on isar imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

7. Martnez-Lorenzo, J. A., F. Quivira, and C. M. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 172-255, 2012.

8. Ren, S., W. Chang, T. Jin, and Z. Wang, "Automated SAR reference image preparation for navigation," Progress In Electromagnetics Research, Vol. 121, 535-555, 2011.
doi:10.2528/PIER11091405

9. Chiang, C.-Y., Y.-L. Chang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

10. Meta, A., P. Prats, U. Steinbrecher, J. Mittermayer, and R. Scheiber, "Terrasar-x topsar and scansar comparison," 2008 7th European Conference on Synthetic Aperture Radar (EUSAR), 1-4, Jun. 2008.

11. Bamler, R., "Optimum look weighting for burst-mode and ScanSAR processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 3, 722-725, May 1995.
doi:10.1109/36.387587

12. Vigneron, C. M., Radiometric image quality improvement of ScanSAR data, M.S. Thesis, Carleton University, Ottawa, ON, Canada, 2001.

13. Shimada, M., "Long-term stability of L-band normalized radar cross section of Amazon rainforest using the JERS-1 SAR," Canadian J. of Remote Sensing, Vol. 31, No. 1, 132-137, 2005.
doi:10.5589/m04-058

14. Shimada, M., O. Isoguchi, T. Tadono, and K. Isono, "Palsar radiometric and geometric calibration," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 12, 3915-3932, Dec. 2009.
doi:10.1109/TGRS.2009.2023909

15. Shimada, M., "A new method for correcting ScanSAR scalloping using forests and inter-scan banding employing dynamic filtering," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 12, 3933-3942, Dec. 2009.
doi:10.1109/TGRS.2009.2027596

16. Romeiser, R., J. Horstmann, and H. Graber, "A new scalloping filter algorithm for ScanSAR images," 2010 IEEE International Geoscience and Remote Sensing Symposium, IGARSS'10, 4079-4082, Jul. 2010.

17. Feng, M. and H. Jun, "The critical techniques for ScanSAR radiometric correction," 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR 2007, 10-13, Nov. 2007.

18. Bast, D. C. and I. G. Cumming, "Radarsat ScanSAR roll angle estimation," 2002 IEEE International Geoscience and Remote Sensing Symposium, IGARSS'02, Vol. 1, 152-154, 2002.

19. Iqbal, M. and J. Chen, "Removal of scalloping in ScanSAR images using kalman filters," 2012 IEEE International Geoscience and Remote Sensing Symposium, IGARSS'12, 260-263, Jul. 2012.

20. Guarnieri, A. M. and C. Prati, "ScanSAR focusing and interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 4, 1029-1038, Jul. 1996.
doi:10.1109/36.508420

21. Brown, R. G. and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley and Sons, Inc., 1992.