Vol. 132
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-02
Design and Validation of a TEM Cell Used for Radiofrequency Dosimetric Studies
By
Progress In Electromagnetics Research, Vol. 132, 369-388, 2012
Abstract
A Transverse Electromagnetic Mode (TEM) cell is one interesting alternative for studies of biological effects of radiofrequency radiation at reduced scale (in vitro studies). Controlled and well-characterized exposure conditions are essential for a concluding investigation: the biological sample has to be exposed to a uniform incident electromagnetic wave and the dose of absorbed radiation has to be precisely determined and correlated with the effect. Unfortunatelly, many times experimental dosimetry is either unavailable or unappliable, so that a pre-characterised and validated experimental set-up is mostly valuable. In this regard, the main objective of present work was to experimentally validate a computational model of an own-built TEM cell designed for bioelectromagnetic experiments in frequency range of 100MHz-1GHz. For validation, three significant parameters were investigated comparatively, by measurements and by computation: scattering parameters; incident electric field distribution; absorbed power in a set of liquid samples. By using the finite integration technique (FIT) method implemented by the commercial code CST Microwave Studio, and by using a vector network analyzer in the experimental approach, we validated the designed TEM cell and characterized it successfully. The second objective was a dosimetric study of four different liquid samples loaded in the cell. We used the absorption coefficient (AC) which may be assimilated to the specific absorption rate (SAR) of energy deposition in the whole sample volume. AC was shown to converge in experiment and simulation up to 800MHz for all samples. AC didn't depend directly upon sample's volume (even if, frequently, greater volumes showed higher absorption) but rather upon the internal field distribution in the sample, distribution that mostly depends on the frequency and on the dimensions of the liquid samples.
Citation
Cora Iftode, and Simona Miclaus, "Design and Validation of a TEM Cell Used for Radiofrequency Dosimetric Studies," Progress In Electromagnetics Research, Vol. 132, 369-388, 2012.
doi:10.2528/PIER12081306
References

1. Crawford, M. L., "Generation of standard EM fields using TEM transmission cells," IEEE Transactions on Electromagnetic Compatibility, Vol. 16, No. 4, 189-195, Nov. 1974.
doi:10.1109/TEMC.1974.303364

2. Durney, C. H., H. Massoudi, and M. F. Iskander, Radiofrequency Radiation Dosimetry Handbook, 4th Ed., USAFSAM-TR-85-73, Brooks AFB, Texas, USA, 1986, http://www.radhaz.com/docs/RF%20Dosimetry%20Handbook%20ver%204.pdf .

3. Guy, A. W., C. K. Chou, and J. A. McDougall, "A quarter century of in vitro research: A new look at exposure methods," Bioelectromagnetics, Vol. 20, No. S4, 21-39, 1999.
doi:10.1002/(SICI)1521-186X(1999)20:4+<21::AID-BEM5>3.0.CO;2-M

4. Tippet, J. C. and D. C. Chang, "Radiation characteristics of electrically small devices in a TEM transmission cell," IEEE Transactions on Electromagnetic Compatibility, Vol. 18, No. 4, 134-140, 1976, http://www.jpier.org/PIERB/pierb29/13.11022506.pdf.
doi:10.1109/TEMC.1976.303492

5. Iftode, C., S. Miclaus, P. Bechet, and E. Surducan, "A TEM cell model analysis for radiofrequency dosimetry improvement by computational means ," Proceedings of the 7th International Symposium on Advanced Topics in Electrical Engineering, Bucharest, May 12-15, 2011.

6. Burkhardt, M., K. Pokoviic, M. Gnos, T. Schmid, and N. Kuster, "Numerical and experimental dosimetry of Petri dish exposure setups," Bioelectromagnetics, Vol. 17, No. 6, 483-493, 1996.
doi:10.1002/(SICI)1521-186X(1996)17:6<483::AID-BEM8>3.0.CO;2-#

7. Green, H. E., "The TEM-mode bandwidth of two-conductor open transmission lines," Progress In Electromagnetics Research, Vol. 40, 1-28, 2003.
doi:10.2528/PIER02060901

8. Nikoloski, N., J. Fröhlich, T. Samaras, J. Schuderer, and N. Kuster, "Reevaluation and improved design of the TEM cell in vitro exposure unit for replication studies," Bioelectromagnetics, Vol. 26, No. 3, 215-224, 2005.
doi:10.1002/bem.20067

9. Boriraksantikul, N., P. Kirawanich, and N. E. Islam, "Near-field radiation from commercial cellular phones using a TEM cell," Progress In Electromagnetics Research B, Vol. 11, 15-28, 2009.
doi:10.2528/PIERB08100201

10. Lee, S. U., H. J. Eom, and J. H. Kwon, "TEM mode in the GTEM cell," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 519-526, 2011.
doi:10.1163/156939311794500296

11. Calo, G. and V. Petruzzelli, "Electromagnetic and thermal analyses of improved GTEM cells for bioelectromagnetic experiments," Progress In Electromagnetics Research, Vol. 125, 503-526, 2012.
doi:10.2528/PIER11122206

12. Zhao, J. X., H. M. Lu, and J. Deng, "Dosimetry and temperature evaluations of a 1800MHz TEM cell for in vitro exposure with standing waves," Progress In Electromagnetics Research, Vol. 124, 487-510, 2012.
doi:10.2528/PIER11091204

13. Rostamzadeh, C., B. Archambeault, and S. Connor, "FDTD analysis of symmetric TEM cell," IEEE International Symposium on Electromagnetic Compatibility, Aug. 8-12, 2005.

14. Moglie, F., V. M. Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetic Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506

15. Malaric, K. and J. Bartolic, "Design of a TEM-cell with increased usable test area," Turkish Journal Electrical Engineering, Vol. 11, No. 2, 143-154, 2003.

16. http://www.cst.com/Content/Products/MWS/Overview.aspx.

17. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103

18. Sevat, P. Design of a TEM cell EMP simulator, Report No. 1084, Defence Research Establishment, Ottawa, Jun. 1991.

19. Zhong, C., "Examinations of higher order mode cutoff frequencies in symmetrical TEM cells ," Proc. of International Symposium on Electromagnetic Compatibility, EMC 2009, 6-11, 2009.

20. Wilson, P. F. and M. T. Ma, "Simple approximate expressions for higher order mode cut-off and resonant frequencies in TEM cells," IEEE Transactions EMC, Vol. 28, No. 3, 125-130, Aug. 1986.

21. Garbe, H. and C. Groh, "Calculating the usable frequency range of TEM-waveguides," Proceedings of the 27th General Assembly of the International Union of Radio Science, Maastricht, NL, Aug. 2002.

22. Morega, M., S. Miclaus, and A. Machedon, "Analysis of the electromagnetic field in a controlled enclosure for biological dosimetry ," Rev. Roum. Sci. Techn. --- Électrotechn. et Énerg., Vol. 52, No. 2, 225-235, Bucarest, 2008.

23. Morioka, T., "A field uniformity study of a TEM cell by using a short wire scatterer," IEEE International Symposium on Electromagnetic Compatibility, Jul. 9-13, 2007.

24. Islam, M. T., H. Z. Abidin, M. R. I. Faruque, and N. Misran, "Analysis of materials effects on radio frequency electromagnetic fields in human head," Progress In Electromagnetics Research, Vol. 128, 121-136, 2012.

25. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, Vol. 42, 131-142, 2003.
doi:10.2528/PIER03010602

26. Angulo, L. D., S. G. Garcia, M. F. Pantoja, C. C. Sanchez, and R. G. Martin, "Improving the SAR distribution in petri-dish cell cultures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 815-826, 2010.
doi:10.1163/156939310791036322

27. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005

28. Complex Dielectric Constant of Water Calculator, http://www.random-science-tools.com/electronics/water dielectric.htm.

29. Hill, R. Performance tests of indexsar `Di-line' TEM sensors for dielectric property measurement of tissue-simulant liquids for SAR testing, Surrey RH5 5DR, Indexsar, UK, Jul. 2002.

30. Aziz, M. S., A. G. Mostafa, A. M. Youssef, and S. M. S. Youssif, "Electrical conductivity and dielectric properties of bulk glass V2O5 (ZnO, PbO) SrO FeO," Physics Research International, Vol. 2011, 10 pages, 2011, Article ID 583420, DOI:10.1155/2011/583420.

31. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

32. Gangwar, R. K., S. P. Singh, and D. Kumar, "SAR distribution in a bio-medium in close proximity with rectangular dielectric resonator antenna," Progress In Electromagnetics Research B, Vol. 31, 157-173, 2011.

33. ISO/IEC, Guide of the expression of uncertainty in measurement, Geneva, 1995.

34. EA Guideline 4/16 "Expression of uncertainty in quantitative testing,", 2003.

35. Laakso, I., "Uncertainty in computational RF dosimetry," Doctoral Dissertation, Aalto University, 2011.