1. Jamieson, D. G. and J. H. Greenberg, "Positron emission tomography of the brain," Computerized Medical Imaging and Graphics, Vol. 13, No. 1, 61-79, 1989.
doi:10.1016/0895-6111(89)90079-7
2. Ollinger, J. M. and J. A. Fessler, "Positron-emission tomography," IEEE Signal Processing Magazine, Vol. 14, No. 1, 43-55, 1997.
doi:10.1109/79.560323
3. Conti, M., et al. "First experimental results of time-of-flight reconstruction on an LSO PET scanner," Physics in Medicine and Biology, Vol. 50, 4507-4526, 2005.
doi:10.1088/0031-9155/50/19/006
4. Muehllehner, G. and J. S. Karp, "Positron emission tomography," Physics in Medicine and Biology, Vol. 51, R117-R137, 2006.
doi:10.1088/0031-9155/51/13/R08
5. Surti, S. and J. S. Karp, "Design considerations for a limited angle, dedicated breast, TOF PET scanner," Physics in Medicine and Biology, Vol. 53, 2911-2921, 2008.
doi:10.1088/0031-9155/53/11/010
6. Mallat, S., A Wavelet Tour of Signal Processing, Academic-Press, 1998.
7. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Prcoessing, Vol. 54, 4311, Nov. 2006.
doi:10.1109/TSP.2006.881199
8. Lee, K., S. Tak, and J. Ye, "A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion," IEEE Trans. Medical Imaging, Vol. 30, 1076-1089, May 2011.
9. Ravishankar, S. and Y. Bresler, "MR image reconsruction from highly undersampled K-space data by dictionary learning," IEEE Trans. Medical Imaging, Vol. 30, 1028-1041, 2011.
doi:10.1109/TMI.2010.2090538
10. Bouman, C. and K. Sauer, "A generalized Gaussian image model for edge-perserving map estimation," IEEE Trans. Signal Processing, Vol. 2, 296-310, Jul. 1993.
11. Rudin, L., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physics D, Vol. 60, 259-268, Jul. 1992.
doi:10.1016/0167-2789(92)90242-F
12. Unser, M. and P. Tafti, "Stochastic models for sparse and piecewise-smooth processing," IEEE Trans. Signal Processing, Vol. 59, 989-1006, Mar. 2011.
doi:10.1109/TSP.2010.2091638
13. Karahanoglu, F., I. Bayram, and D. van de Ville, "A signal processing approach to generalized 1-D total variation," IEEE Trans. Signal Processing, Vol. 59, 5265-5274, Nov. 2011.
doi:10.1109/TSP.2011.2164399
14. Rodriguez, P. and B. Wohlberg, "Efficient minimization method for a generalized total variation functional," IEEE Trans. Image Processing, Vol. 18, 322-332, Feb. 2009.
doi:10.1109/TIP.2008.2008420
15. Candes, E., J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., Vol. 59, 1027-1223, 2006.
16. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, 489-509, Feb. 2006.
doi:10.1109/TIT.2005.862083
17. Lustig, M., D. Donoho, and J. Pauly, "Sparse MRI: The application of compressed sensing for rapid MR imaging," Magnetic Reson. Med., Vol. 58, 1182-1195, Apr. 2007.
doi:10.1002/mrm.21391
18. Bian, J., J. Siewedsen, X. Han, et al. "Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT," Phys. Med. Biol., Vol. 55, 6575, 2010.
doi:10.1088/0031-9155/55/22/001
19. Han, X., J. Bian, D. Eaker, et al. "Algorithm-enabled low-dose micro-CT imaging," IEEE Trans. Medical Imaging, Vol. 30, 606-620, Mar. 2011.
20. Harmany, Z. T., R. F. Marcia, and R. M. Willett, "Sparsity-regularized photon-limited imaging," IEEE International Symposium on Biomedical Imaging from Nano to Macro, 772-775, 2010.
doi:10.1109/ISBI.2010.5490062
21. Wang, G. and J. Qi, "Direct reconstruction of dynamic PET parameteric images using sparse spectral representation," IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 867-870, 2009.
doi:10.1109/ISBI.2009.5193190
22. Ahthoine, S., J. F. Aujol, Y. Broursier, and C. Melot, "On the efficiency of proximal methods for CBCT and PET reconstruction with sparsity constraint," 4th Workshop on Signal Processing with Adaptive Sparse Structured Representations, 25, 2011.
23. Meinshausen, N. and B. Yu, "LASSO-type recovery of sparse representations for high-dimensional data," Annals of Statistics, Vol. 37, 246-270, 2009.
doi:10.1214/07-AOS582
24. Zhu, C., "Stable recovery of sparse signals via regularized minimization," IEEE Trans. Information Theory, Vol. 54, 3364-3367, Jul. 2008.
25. Mallon, A. and P. Grangeat, "Three-dimensional PET reconstruction with time-of-flight measurement," Phys. Med. Biol., Vol. 37, 717-729, 1992.
doi:10.1088/0031-9155/37/3/016
26. Cho, S., S. Ahn, Q. Li, and R. Leahy, "Analytical properties of time-of-flight PET data," Phys. Medi. Biol., Vol. 53, 2809-2821, 2008.
doi:10.1088/0031-9155/53/11/004
27. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imaging Sciences, Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542
28. Richter, S. and R. De Carlo, "Continuation methods: Theory and applications," IEEE Transactions on Automatic Control, Vol. 28, No. 6, 660-665, 1983.
doi:10.1109/TAC.1983.1103294
29. Wang, Z. and A. C. Bovik, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Processing, Vol. 13, No. 4, 1-14, 2004.
doi:10.1109/TIP.2003.819861
30. Zhdanov, M. and E. Tolstaya, "Minimum support nonlinear parameterization in the solution of a 3D magnetotelluric inverse problem," Inverse Problems, Vol. 20, 937-952, 2004.
doi:10.1088/0266-5611/20/3/017
31. Lois, C., et al. "An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging," The Journal of Nuclear Medicine, Vol. 51, No. 2, 237-245, 2010.
doi:10.2967/jnumed.109.068098
32. Daubechies, I., et al. "Iteratively re-weighted least squares minimization for sparse reconvery," Communications of Pure and Applied Mathematics, Vol. 63, No. 1, 1-38, 2010.
doi:10.1002/cpa.20303
33. Vogel, C. R., "Non-convergence of the L-curve regularization parameter selection method," Inverse Problems, Vol. 12, 535-547, 1996.
doi:10.1088/0266-5611/12/4/013
34. Golub, G. H., M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics, Vol. 21, No. 2, 215-223, 1979.
doi:10.1080/00401706.1979.10489751
35. Li, K.-C., "From STEIN's unbiased risk estimates to the method of generalized cross validation," The Annals of Statistics, Vol. 13, No. 4, 1362-1377, 1985.
doi:10.1214/aos/1176349742