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Abstract—Recently, the limited-angle TOF-PET system has become
an active research topic due to the considerable reduction of hardware
cost and potential applicability for performing needle biopsy on
patients while in the scanner. This undersampling measurement
configuration oftentimes suffers from the deteriorated reconstructed
images. However, the established theory of Compressed Sampling
(CS) provides a potential framework for undertaking this problem,
given that the imaged object can be sparse in some transformed
domain. In here, we studied using numerical simulations the
application of sparsity-promoted framework to TOF-PET imaging
for two undersampling configurations. From these simulations, a
relationship was obtained between the number of detectors (or the
range of angle) and TOF time resolution, which provided an empirical
guide of designing a low-cost TOF-PET systems while ensuring good
reconstruction quality. Another contribution is the exploration of p-
TV regularization, which showed that RMSE (Root of Mean Square
Error) and SSIM (Structural Similarity) were optimized when p = 0.5.
Several sets of representative numerical experiments were executed to
validate the proposed methodology, which demonstrates the promising
applicability of undersampling TOF-PET imaging.

1. INTRODUCTION

Positron emission tomography (PET) is an imaging modality where
the distribution of the positron emitting radionuclide inside the body
is determined based on the detection of photons emitted from positron
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annihilation [1]. In contrast to computed tomography (CT) and
magnetic resonance imaging (MRI) that provide detailed anatomical or
morphological information, PET shows great superiority in monitoring
the functional metabolism in normal and neoplastic tissues [2]. The
applicability of time-of-flight (TOF) information in upgrading PET
imaging has been realized since Brownell et al., especially for the
purpose of whole-body imaging [3]. The fundamental improvement
rendered by TOF is an increase in signal-to-noise ratio (SNR) [3, 4];
therefore, TOF can help improve the quality of reconstructed images.
TOF brought resurgence to PET with the development of fast detector
system, (i.e., LSO used).

Recently, the limited-angle TOF-PET system has been proposed
for breast-dedicated imaging [5], and it turned to be an active area
of research due to its distinct advantages, in particular, the capacity
of simultaneously performing a needle biopsy on patients while in the
scanner. Furthermore, the limited-angle configuration can significantly
reduce the hardware manufacturing cost by reducing the number of
detectors. Note that this kind of system only can be applicable
under the condition that the TOF time resolution is high enough.
Nonetheless, artifacts will inevitably appear in the reconstructed
images because of the incomplete coverage of imaged object by a partial
PET ring. From a mathematical point of view, this reconstruction
scheme is a serious ill-posed inverse problem due to the deficient
observations compared with unknowns. Consequently, there are an
infinite number of solutions, which can match the observed data, but
cannot provide meaningful interpretation for clinical purposes.

One of the popular methods to address this problem is
regularization, whose idea is to restrict the data fidelity by augmenting
the penalty term characterizing prior information of the object.
Furthermore, a large number of medical images are shown to be
piecewise constant, and they also have sparse representations in some
transformed domain like discrete cosine transformation (DCT) and
wavelet [6], or some trained over-complete dictionary [7–9]. It means
that sparse regularizations are good for the reconstruction of medical
imaging. As a matter of fact, since the invention of compressed
sampling (CS) developed by Candes et al. [15], the sparsity-promoted
solution [15, 16] has been widely explored in medical imaging problems,
such as, MRI [8, 9, 17], CT [18, 19], and PET [20–22]. Encouraged by
these observations, the sparsity-promoted regularization was employed
to address our undersampling TOF-PET imaging problem mentioned
above.

It is well known that CS is a revolutionary signal sampling
paradigm, where a N -dimensional signal can be faithfully recovered
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from much fewer measurements than N , given that the signal of
interest is itself sparse or sparse represented in some transformed
domain such as DCT, wavelet and so on [15, 16]. Due to the
potential improvement on reconstruction performance over traditional
approaches and dramatic cost reduction in data acquisition, CS
methods have been extensively investigated in many fields covering
medical imaging [8, 9, 17–22], communication [23, 24], and image
processing [6, 7, 10–12].

As for the convex optimization involved in CS, the objective
function to be minimized consists of two components, the first
represents the data fidelity, and the second is the sparsity-promoted
regularized term. Traditionally, to impose the piecewise-constant
property of medical images the role of sparse-promoted penalty is
usually assigned to the total variation (TV) regularization. More
generic statements on sparsity through lp-norm constraint have also
been made (see the details in [13, 15, 16]).

Regarding the application of sparse reconstruction in PET
imaging, the research has been focused on the development of efficient
reconstruction algorithms [20–22]. To the best of our knowledge, the
first work within the context of the sparsity-promoted reconstruction
can be traced to that made by Harmany et al. [20]. In [20], the photon-
limited collections are modeled as Poisson distribution and the choice
of wavelet-based sparse transformation is discussed. Furthermore, to
correct the estimation bias caused by the mandatory introduction of
the sparsity-promoted term into the original data fidelity, Wang and Qi
proposed a two-step reconstruction strategy [21], where the sparsity-
promoted algorithm is first implemented to determine the basis
components with significant coefficients, and then the final solution
is straightforward obtained by solving the reduced-dimensional least-
square problem. In [22], the authors briefly introduce the application
of the first-order primal-dual algorithm to deal with real PET data.
In summary, these studies show that CS is capable of breaking the
bottleneck of PET imaging with fewer observed data than unknowns.

In here we made the first attempt to investigate the potential
benefit of sparsity-promoted reconstruction for the undersampling
TOF-PET imaging. The combined use of TV and l1-norm
regularizations is preferred for sparsity-promoted medical imaging
problems, in particular, the former is to make use of the property of
piecewise constant enjoyed by most of medical images, and the latter
is to take advantage of their intrinsic correlated structured property.
Additionally, such combination renders us another benefit that the l1-
norm regularization can obviously suppress the artifacts introduced
by TV [17]. Our first contribution is the development of an efficient
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algorithm that deals with the combination of l1-norm and p-TV,
where p-TV is the direct extension of traditional TV regularization.
Specifically, p-TV becomes the standard TV when p = 1. Our
numerical simulations show that 0.5-TV (p = 0.5) is optimal for
our problem. The second contribution is to extensively investigate
two undersampling TOF PET configurations within the framework of
sparse reconstruction. One is similar as the current traditional PET
configuration, except that fewer detectors are uniformly and sparsely
distributed over a complete ring, and the other one is the so-called
limited-angle PET system [5], where the detectors with density of
384/360◦ are distributed over two opposite partial rings. We carried
out numerous numerical experiments to study the reconstruction
quality dependent on the number of detectors (or the range of angle)
and the TOF time resolution, which provides an empirical guide for
designing a low-cost undersampling TOF-PET system. The results
show that there is a trade-off between the choices of number detectors
(or the range of angle) and the TOF-PET time resolution.

The remainder of this paper is organized as follows: In
Section 2, the methodology for solving the optimization problem with
combination of p-TV and l1-norm regularizations is described, and
its associated reconstruction algorithm is introduced. In Section 3,
four sets of numerical experiments are discussed. The first set
gives a comparison between the traditional EM (Expected Maximum)
algorithm and the proposed sparsity-promoted algorithm to show the
advantages of applying sparsity-promoted framework to the TOF-PET
imaging; the second set is used to study the effect of p-TV on the
reconstruction quality; the third and fourth sets are used to discuss
the relationship between the number of detectors (or the range of
angle), TOF time resolution and the reconstruction performance in
terms of RMSE and 1-SSIM. Finally some conclusions are summarized
in Section 4.

2. METHODOLOGY

Formally expressed, the TOF-PET measurement can be approximately
represented by the following convolution of the scene intensity f and a
TOF kernel function h along the line-of-response (LOR) (referring to
Figure 1), in particular [25, 26],

y (s, θ, t) =
∫ ∞

−∞
f(s cos θ − l sin θ, s sin θ + l cos θ)h(t− l)dl. (1)

Here, the variables s and θ are the radial and angular coordinates,
respectively, while t is the so-called TOF variable. The kernel h is



Progress In Electromagnetics Research, Vol. 133, 2013 239

Figure 1. Sketch map of TOF-PET imaging system where the red line
denotes the LOR (line of response). The curve marked as kernel is the
TOF Gaussian function and the ROI (region of interest) is discretized
into n× n pixels.

often considered to be time-shift invariant and modeled as a Gaussian
function [26].

To facilitate the implementation of numerical simulation, the
continuous Equation (1) is usually casted into a series of compact
forms, i.e.,

yt = AHtf = Atf ,
t = {−T∆t,− (T − 1)∆t, . . . , (T − 1) ∆t, T∆t} (2)

where ∆t is known as TOF bin, and the number of bins is (2T +1). A
is the projection matrix of PET system, whose entries characterize the
probability p(i, j) that an emission from j-th pixel is detected by i-th
pair of detectors of PET ring [1–5, 26]. In Equation (2), yt ∈ RM is a
M -dimensional vector representing y(s, θ, t) at the moment of t. Htf
accounts for the convolution of Gaussian kernel and object, where Ht

is a Topletiz matrix generated from h. Note that without otherwise
specific claim, the notation of f is a N -length vector, which is stacked
from the two-dimensional image f with size of n× n.

The reconstruction of f can be addressed through the following
least square problem, in particular,

f̂ = arg min
f

T∑

t=−T

‖yt −Atf‖2
2. (3)
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As pointed out in previous section, almost all the traditional methods
fail to produce meaningful solution to (3) for undersampling TOF-PET
scenarios in most cases, especially for the case of noisy observation.
To circumvent this problem, two priors of piecewise constant and
structure-correlated sparse are incorporated to the objective function
of Equation (3), accordingly,

f̂ = arg min
f

{
T∑

t=−T

‖yt −Atf‖2
2 + γ1 ‖f‖p−TV + γ2 ‖Φf‖1

}
. (4)

In Equation (4), ‖f‖p−TV is defined as

‖f‖p−TV =
∑

i,j

(
(∆xfi,j)

2 + (∆yfi,j)
2
)p/2

(5)

and
∆xfi,j = fi+1,j − fi,j , ∆yfi,j = fi,j+1 − fi,j , (6)

where f in Equations (5) and (6) is the n× n matrix representation of
discretized object. The regularization factors of γ1 and γ2 allow the
tradeoff between the data fidelity and the priors of f, which should be
carefully determined. Φ is a suitable sparse transformed basis, and
specified as discrete cosine transformation (DCT) here.

It is noted that the objective function of Equation (4) is analogous
to one proposed by Lustig et al. [17]; however, compared to [17]
and other relevant works this work presents two specific differences:
(a) instead of implementing a conjugate gradient algorithm to the
whole objective function, we provide an alternative approach to
solve Equation (4), i.e., separately dealing with p-TV regularization
term with iteratively reweighted method, while applying a shrinkage-
thresholding operation on l1-norm constraint; (b) the generalized
TV, i.e., p-TV, instead of standard TV regularization is adopted.
As a matter of fact, ‖f‖p−TV is the straightforward extension of
standard TV-regularization, which was firstly mentioned by Rodriguez
and Wohlberg [14]. However, in [14], only the 1-TV and 2-TV
are numerically studied for imaging painting and de-noise. In the
subsequent section we will discuss the performances of different p-TV
adapted for our TOF-PET imaging problem, which show that the 0.5-
TV is optimal.

To efficiently solve the Equation (4), we introduce an auxiliary
variable d = Φf ; consequently, Equation (4) can be equivalently
expressed by the following two-fold optimization problem

min
f ,d

{
T∑

t=−T

‖Atf − yt‖2
2 + γ1 ‖f‖p−TV + γ2 ‖d‖1

}
, s.t. d = Φf . (7)
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Furthermore, the Lagrange form of the above constrained optimization
problem can be readily derived as

min
f ,d

{
T∑

t=−T

‖Atf − yt‖2
2+γ1 ‖f‖p−TV +γ2 ‖d‖1+γ3 ‖d− Φf‖2

2

}
. (8)

Intuitively, the classical alternatively iterative strategy can be
exploited to treat Equation (8), the working procedure consists of
alternating between performing the update of f using the current
estimate for d, and computing d based on the update of f. In this
work, the maximum iteration number and minimum tolerance error
are employed as criterions to stop the iterative process, and set to be
60 and 10−5, respectively. The tolerance error is defined as

Err =

T∑
t=−T

‖yt−Atf‖2

T∑
t=−T

‖yt‖2

. (9)

Assuming we have the solutions of f and d at the (n − 1)-th
iteration, then the updates for f and d at the n-th iteration are
made by the following strategy, specifically, alternatively solving the
following two sub-optimization problems represented by Equation (10)
and Equation (11), namely,

f (n) =arg min
f

{
T∑

t=−T

‖Atf−yt‖2
2+γ1 ‖f‖p−TV +γ3

∥∥∥d(n−1)−Φf
∥∥∥

2

2

}
(10)

and

d(n) = arg min
d

{
γ2 ‖d‖1 + γ3

∥∥∥d− Φf (n)
∥∥∥

2

2

}
, (11)

respectively.

2.1. Step I: Update of f

In here we would like to solve Equation (10) by using the strategy
of iteratively reweighted approach [32]. The term of ‖f‖p−TV can be
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equivalently expressed as

‖f‖p−TV =
∑

i,j

(
(∆xfi,j)

2 + (∆yfi,j)
2
)p/2

=
∑

i,j

(∆xfi,j)
2

(
(∆xfi,j)

2+(∆yfi,j)
2
)1−p/2

+
∑

i,j

(∆xfi,j)
2

(
(∆xfi,j)

2+(∆yfi,j)
2
)1−p/2

= ‖Dxf‖2
W + ‖Dyf‖2

W ≈ ‖Dxf‖2
W(n−1) + ‖Dyf‖2

W(n−1) , (12)

where
(Dxf)i,j = ∆xfi,j , (Dyf)i,j = ∆yfi,j (13)

and

W(n−1) = diag

(((
∆xf (n−1)

i,j

)2
+

(
∆yf (n−1)

i,j

)2
)p/2−1

)
. (14)

In order to avoid singularity of ((∆xf (n−1)
i,j )2 + (∆yf (n−1)

i,j )2), a
small positive real ε is introduced to modify W, i.e.,

W(n−1) = diag

(((
∆xf (n−1)

i,j

)2
+

(
∆yf (n−1)

i,j

)2
+ ε

)p/2−1
)

. (15)

Now, we can readily derive the iterative solution to (10) as

f (n) = arg min
f

{
T∑

t=−T

‖Atf − yt‖2
2 + γ3

∥∥∥d(n−1) − Φf
∥∥∥

2

2

+γ1

(
‖Dxf‖2

W(n−1) + ‖Dyf‖2
W(n−1)

)}
. (16)

Explicitly, the closed-form estimation of f (n) can be achieved as

f (n) =

(
T∑

t=−T

A′
tAt + γ1

(
D′

xW(n−1)Dx + D′
yW(n−1)Dy

)
+ γ3I

)−1

(
γ3Φ′d(n−1) +

T∑

t=−T

A′
tyt

)
. (17)

To avoid the overwhelming computation of calculating matrix
inverse involved in Equation (17), the classical preconditioned
conjugate gradient (PCG) method was explored to solve Equation (16)
in this work.
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2.2. Step II: Update of d

Through the standard implementation widely made in the literature
of compressed sampling, the shrinkage-thresholding solution d(n) to
problem (11) can be obtained as [27]

d(n) = arg min
d

{
γ2 ‖d‖1+γ3

∥∥∥d−Φf (n)
∥∥∥

2

2

}
= Soft Thr

(
Φf (n),

γ2

γ3

)
.(18)

Finally, the whole procedure of the proposed algorithm for solving
sparsity-promoted TOF-PET reconstruction (i.e., Equation (4)) has
been summarized in Table 1.

Regarding the choices of regularization parameters γ1, γ2, and
γ3, they should be carefully chosen. Specifically, if the regularization
parameters are large, the resulting solution will seriously stray from
the true solution; on the other hand, small regularization parameters
will cause the objective function a highly ill-conditioned problem,
and extremely slow convergence of PCG. Though some efforts have
been made such as L-curve [33], the generalized cross validation
method [34], Stein’s Unbiased Risk Estimator (SURE) [35], and so
on, this problem is still an open challenging question mainly due to
the computational consideration. In this paper the choices of γ1, γ2,
and γ3 are empirically determined though a large number of numerical
experiments.

Table 1. Procedure for solving Equation (4) using the sparsity-
promoted algorithm.

Initial setup: Initial setup: d(0) = 0; W(0) = I; f (0) = 0; n = 1

While Err ≥ 10−5 & n ≤ 50

f (n) =

(
T∑

t=−T

A′
tAt+γ1

(
D′

xW
(n−1)Dx+D′

yW
(n−1)Dy

)
+ γ3I

)−1

(
γ3Φ

′d(n−1) +
T∑

t=−T

A′
tyt

)

d(n) = Soft Thr
(
Φf (n), γ2

γ3

)

W(n) = diag

(((
∆xf

(n)
i,j

)2

+
(
∆yf

(n)
i,j

)2

+ ε

)p/2−1
)

Err =

T∑
t=−T

‖Atf
(n)−yt‖2

2

T∑
t=−T

‖yt‖22

γ1 = 0.8× γ1

n = n + 1

End While
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Furthermore, the popular continuation technique was applied on
γ1 by initially setting a large γ1 and gradually decreasing its value
as the iteration is preceded [28]. Therefore, the optimized solution
with previous value of γ1 provides a warm start for the next iteration.
In our implementation, we adopted the continuation technique and
empirically chose γ1 = 0.8× γ1.

3. NUMERICAL SIMULATION AND DISCUSSION

In this section, numerical experiments were carried out to investigate
the benefits of the sparsity-promoted reconstruction in TOF-PET
imaging, where the tradeoff between time resolution and number of
detectors (or range of angle) is particularly of concern. The phantom
used in the simulation is the well-known Shepp-Logan phantom,
as shown in Figure 2. We considered two different undersampling
measurement configurations. The first one is parallel to the current
traditional PET system, except fewer detectors are sparsely and
uniformly distributed over the complete PET ring, as sketched in
Figure 3(a). The second one is the limited-angle PET system
represented in [5], where the detectors are furnished with the density of
384/360◦ over two opposite partial PET rings, as shown in Figure 3(b).
For convenience, the first configuration is referred as configuration A
while the second one is called configuration B. In this work, the radius
of PET ring is set to be 35 cm, while the scale of ROI into which the
phantom is embedded is 30 cm by 30 cm. The phantom used in the
study is the well-known Shepp-Logan simulated using MATLAB tool
(i.e., phantom), which is discretized into 128 by 128 pixels.

(a) (b) (c)

Figure 2. (a) Ground truth of 128× 128 Shepp–Logan phantom used
in numerical simulations; (b) horizontal profile that corresponds to
the slice indicated by horizontal dotted line in panel (a); (c) vertical
profile which corresponds to the slice indicated by vertical dotted line
in panel (a).
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(a) (b)

Figure 3. Sketch maps of two undersampling TOF-PET measurement
configurations, (a) configuration A with detectors distributed sparsely
and uniformly over the full PET ring; (b) configuration B with
detectors distributed compactly over two opposite partial rings, where
ϕ denotes the range of angle.

This section is arranged as follows. First, we show the superiority
of sparsity-promoted approach in dealing with undersampling
observation mentioned previously. Second, the solution through the
combined regularizations of p-TV and l1-norm is examined, which
empirically shows that p = 0.5 is the best candidate to achieve
acceptable solution for our problem. Third, the reconstruction
performances dependent on system time resolution t, and the
numbers of detectors N for configuration A while the range of angle
for configuration B are investigated in Subsections 3.3 and 3.4,
respectively.

In this paper, RMSE (Root of Mean Square Error) and SSIM
(Structural Similarity) [29] are used as criterions to assess the
reconstruction quality, whose definitions are

RMSE =
‖frec − ftrue‖
‖ftrue‖ (19)

and
SSIM =

(2µrecµtrue + c1) (2σcross + c2)(
µ2

rec + µ2
true + c1

) (
σ2

rec + σ2
true + c2

) (20)

respectively. Here, µrec and µtrue are the average of the reconstructed
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image (f rec) and true image (f true), respectively; σ2
rec and σ2

true are
the associated variances of them, σcross is the covariance of f rec and
f true, c1 and c2 are two variables to stabilize the division with weak
dominator.

3.1. Numerical Test 1

In this subsection, a set of numerical simulations under configuration A
is carried out to demonstrate the superiority of the proposed sparsity-
promoted solver over traditional EM algorithm, where PET with and
without TOF information cases are considered. In here, the time
resolution and TOF bin are set as 500 ps and 67 ps, respectively [31].

Firstly we consider the PET imaging without TOF. With 50, 70,
110, 170 and 190 detectors used, Figure 4(a) shows the reconstructed
images and their associated horizontal profiles obtained through
the proposed sparsity-promoted algorithm. For comparison, the
corresponding reconstructed results using traditional EM algorithms
are reported in Figure 4(b). It shows intuitively that the sparsity-
promoted method is able to provide much better results than the
traditional EM algorithm. Moreover, we also report the RMSEs and
(1-SSIM)s of the reconstructed PET images in Table 2.

Secondly, a similar analysis on TOF-PET imaging is also
carried out. The reconstructed images and horizontal profiles
through proposed sparsity-promoted and EM algorithms are shown in
Figures 5(a) and 5(b), respectively. Also the corresponding RMSEs
and (1-SSIM)s are included in Table 2. It is verified again that
the sparsity-promoted method gave much better results than the
traditional EM algorithm.

Table 2. RMSEs and (1-SSIM)s of PET and TOF-PET images
reconstructed through sprasity-promoted and EM algorithms for
different detectors used, where measurement configuration A is
assumed.

Number of detector 50 70 110 190 270

Non-TOF

EM

RMSE 0.4563 0.3994 0.2364 0.1797 0.0338

1-SSIM 0.7547 0.3144 0.2142 0.1681 0.0470

Non-TOF

Sparse

RMSE 0.3976 0.3126 4.44×10−4 1.92×10−4 1.8×10−4

1-SSIM 0.1119 0.1251 6.08×10−6 5.40×10−6 5.33×10−6

TOF

EM

RMSE 0.3095 0.2515 0.2156 0.2177 0.0320

1-SSIM 0.2361 0.1706 0.1445 0.0914 0.0351

TOF

Sparse

RMSE 0.2599 0.1046 3.24×10−4 1.79×10−4 1.66×10−4

1-SSIM 0.0407 0.0024 5.54×10−6 5.33×10−6 5.31×10−6
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(a)

(b)

Figure 4. PET images reconstructed using (a) the proposed sparsity-
promoted and (b) the traditional EM algorithms for different number
of detectors used. The corresponding horizontal profiles are also
illustrated via red solid line.

From the above results, we can verify that TOF information is
favorable to enhance image quality. More importantly, we notice that
the sparsity-promoted approach to PET imaging performs significantly
better than EM algorithm, in the sense of whether visual observation
or RMSE and 1-SSIM. Specifically, for TOF-PET imaging the sparse
solver can provide a visually acceptable solution when 70 detectors
are used; in contrast, 190 detectors are required by traditional EM
algorithm. Even in the absence of TOF information, the sparsity-
promoted approach can provide almost exact reconstruction with only
110 detectors; however, the reconstruction images obtained from EM
algorithm suffer from serious salt and pepper noise, even with 270
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(a)

(b)

Figure 5. TOF-PET images reconstructed using (a) the proposed
sparsity-promoted and (b) the traditional EM algorithms for different
number of detectors used. The corresponding horizontal profiles are
also illustrated via red solid line.

detectors.
From Table 2, we can quantitatively observe the benefits rendered

by the sparsity prior and TOF information. Overall, the RMSE
and 1-SSIM levels of the reconstructed images using the sparsity-
promoted algorithm are much lower than those obtained using the
EM algorithm. For instance, with 110 detectors used, RMSEs of
images reconstructed by EM algorithm are 0.2156 and 0.2364 for the
modalities with and without TOF information. However, they can
be enhanced to 3.24 × 10−4 and 4.44 × 10−4, respectively, with the
sparsity-promoted algorithm implemented. For the cases of much fewer
detectors, e.g., 50 detectors and 70 detectors, the sparsity-promoted
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algorithm still significantly outperforms EM algorithm.
Regarding the horizontal profiles shown in Figures 4(a), 5(a)

and 4(b), 5(b) corresponding to the reconstructed images obtained
from the sparsity-promoted and EM algorithms, we can see that
the profiles obtained from sparsity-promoted algorithm are almost
indistinguishable from the ground truth, and they are more exact
and smooth than those obtained from EM algorithm. Furthermore,
they demonstrate the capability of the sparsity-promoted algorithm in
reducing the artifacts produced in reconstruction process.

From the above results, we can conclude that a substantial
improvement in reconstructed image quality is expected with the
combination of TOF information and sparsity-promoted algorithm.

3.2. Numerical Test 2: p-TV

As we known, the different choices of variable p involved in p-TV
will produce different effects on the TOF-PET reconstruction quality.
Roughly, the sparse solution in the sense of gradient counterpart can
be promoted when 0 ≤ p ≤ 1; in contrast, no sparsity is enforced
otherwise. Furthermore, it is well known that p = 0, p = 1 and
p = 2 are three candidates most widely used in dealing with inverse
problems. Specifically, p = 0 corresponds to the so-called support
detector [30]. It usually presents computational challenge due to
the intrinsic non-convexity. p = 1 is known as the standard TV
regularizer [11], and p = 2 is the well-known Tikhnov regularization.
So far, it hasn’t been clear yet what the optimal value of p is for
efficiently dealing with practical problem. In here, we intend to
obtain a suitable value of p for an optimal reconstruction. Same
as in numerical test 1, this set of experiments is proceeded under
configuration A, and the time resolution and TOF bin are set to be
500 ps and 67 ps, respectively. Figure 6 shows a series of reconstructed
TOF-PET images corresponding to p = 0, 0.5, 1, 1.5 and 2 and
Figure 7 shows their associated convergences. Table 3 presents their
associated RMSEs and (1-SSIM)s. From Figures 6 and 7, we can
observe that p = 0.5 is capable of achieving a solution matching the
observed data best; therefore, it has the strongest ability of avoiding
trapping into the local minimum. At the same time, Figures 8(a) and
8(b) give the dependences of RMSE and 1-SSIM on the values of p
varying from 0 through 2 with an interval of 0.1, which support the
standpoint that p = 0.5 or so is the best candidate to achieve sparsity-
promoted solution for our problem. In summary, we can conclude that
p = 0.5 provides best TOF-PET reconstruction from Figure 6 through
Figure 8.
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Figure 6. Reconstructed TOF-PET images and their associated
horizontal profiles corresponding to different values of p = 0, 0.5, 1,
1.5 and 2 for p-TV.

Figure 7. Convergence curves of the sparsity-promoted algorithm for
different values of p = 0, 0.5, 1, 1.5 and 2 for p-TV.

Table 3. RMSEs and (1-SSIM)s of TOF-PET images reconstructed
through sparsity-promoted algorithm with different choices of p-TV,
where configuration A is used.

P 0.0 0.5 1.0 1.5 2.0

RMSE 0.1658 0.0001 0.1515 0.2094 0.2303

1-SSIM 0.0209 5.72× 10−6 0.0434 0.1490 0.2329
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(a) (b)

Figure 8. Reconstruction performance with the different choices of
p value for p-TV under configuration A with 70 detectors. (a) RMSE
versus p, and (b) 1-SSIM versus p.

3.3. Numerical Test 3: Investigation on Configuration A

Through a set of numerical experiments associated with configuration
A, we studied the relationship between the RMSE and 1-SSIM of
images reconstructed through sparsity-promoted algorithm, the time
resolution t of TOF-PET system, and the numbers of detectors N . The
basic purpose of this investigation is to find the sufficient condition
of getting acceptable TOF-PET reconstructions for limited detectors
uniformly distributed over a complete PET ring. We would like to
mention that normally the parameters of γ1, γ2 and γ3 in our sparsity-
promoted algorithm are empirically tuned and set to be 1 × 10−2,
1× 10−4, and 1× 10−8, respectively.

Reconstructed images with different time resolutions of 100 ps,
700 ps, 1300 ps, 1900 ps and 2500 ps obtained through the sparsity-
promoted method are shown in Figure 9, where 70 detectors were used.
Their corresponding horizontal profiles are also provided. From this set
of figures one can observe that the reconstruction quality gets worse as
the time resolution increases. Their associated RMSEs and (1-SSIM)s
are presented in Table 4.

The generic dependences of RMSEs and (1-SSIM)s on the
number of detectors N and the TOF time resolution t are shown in
Figures 10(a) and 10(b), respectively, where x-axis denotes the time
resolution t in ps while y-axis is for number of detectors N . In this set
of simulations, the TOF time resolution t ranges from 100 ps to 3000 ps,
with interval of 100 ps, while the number of detectors N varies from 50
through 110 with interval of 10. From Figure 10, we can see a tradeoff
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Figure 9. TOF-PET images reconstructed through sparsity-promoted
algorithm and their corresponding horizontal profiles for different TOF
time resolutions under configuration A using 70 detectors.

(a) (b)

Figure 10. Contours of (a) RMSE and (b) 1-SSIM of TOF-PET
reconstructed images as a function of numbers of detectors N and
TOF resolution t, for configuration A. The red solid lines represent
the phase transition curves with a RMSE threshold of 0.1.

Table 4. RMSEs and (1-SSIM)s of TOF-PET images reconstructed
through sparsity-promoted algorithm with different TOF-PET time
resolutions, where configuration A with 70-detectors is used.

Time resolution (ps) 100 700 1300 1900 2500

RMSE 1.99× 10−4 0.1887 0.2263 0.2274 0.2422

1-SSIM 5.04× 10−6 0.0067 0.0148 0.0284 0.0463
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Table 5. RMSEs and (1-SSIM)s of TOF-PET images reconstructed
through sparsity-promoted algorithm with different TOF-PET time
resolutions, where configuration B with range of angle being 60 degree
is used.

Time

resolution (ps)
100 700 1300 1900 2500

RMSE 1.79× 10−4 0.0763 0.0527 0.1832 0.2584

1-SSIM 4.93× 10−6 6.84× 10−4 3.58× 10−4 0.0082 0.0164

between the number of detectors and time resolution, in particular:
(a) the more the detectors, the better the reconstruction; and (b) the
higher the TOF time resolution, the better the reconstruction. We can
choose suitable critical values for RMSE and 1-SSIM as a threshold
according to the requirements of reconstruction quality; consequently,
we can see from Figure 10 that for each t there is a critical value Nc

above which the reconstructed TOF-PET images can be considered
acceptable. Appealingly, it is desirable to get the explicit dependence
of Nc on t for given threshold values of RMSE or 1-SSIM. For instance,
if the threshold of RMSE is chosen as 0.1, after carrying out the
standard least square method we can derive Nc(t) as

Nc(t) = 108− 48 exp
(−0.016t1.5

)
. (21)

For convenience, we would like to refer this curve represented by
Equation (21) as a transition phase curve, which has been superposed
in Figure 10(a) by a red line. In addition, this curve is very close to
that obtained by a similar analysis on 1-SSIM with the threshold of
0.004, as shown by red line in Figure 10(b).

3.4. Numerical Test 4: Investigation on Configuration B

With almost the same computational setup as those used in
numerical test 3, we conducted a parallel numerical investigation on
configuration B to explore the relationship between the reconstruction
performance represented by RMSE and 1-SSIM, TOF time resolution
t, and the range of angle ϕ. Different from previous subsection, γ1, γ2

and γ3 are set to be 1× 10−3, 1× 10−4, and 1× 10−8, respectively.
Figure 11 shows the TOF-PET reconstructed images through

sparsity-promoted algorithm with the range of angle fixed at 60◦ and
their corresponding horizontal profiles for TOF time resolutions of
100 ps, 700 ps, 1300 ps, 1900 ps and 2500 ps. Their associated RMSEs
and (1-SSIM)s are presented in Table 5. From these figures and tables,
we can obtain the following two conclusions:
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Figure 11. TOF-PET images and their corresponding vertical profiles
for different time resolutions, under configuration B with range of angle
being 60◦.

(a) for a fixed range of angle, the reconstruction quality goes
down as the time resolution increases, similar as one drawn through
numerical test 3.

(b) the reconstructions close to the upper and bottom edges of
phantom are distorted, mainly resulting from deficient rays traveling
through these two regions.

The relations between RMSE and 1-SSIM of reconstructed images,
the range of angle ϕ and the TOF resolution t have been illustrated in
Figures 12(a) and 12(b), respectively. Here, the TOF time resolution t
ranges from 100 ps to 3000 ps, with interval of 100 ps, while the range
of angle varies between 40◦ and 110◦ with interval of 10◦. In Figure 12,
the x-axis denotes the time resolution t in ps while the range of angle
ϕ is for y-axis. From Figure 12, we see that for each t there is a
critical value ϕc above which the reconstructed TOF-PET images can
be acceptable. Similarly, if the threshold of RMSE is specified as 0.05,
the phase transition curve of ϕc(t) can be fitted into

ϕc(t) = −510− 3284a tan(9t + 300). (22)

This curve is close to that fitted for 1-SSIM with a threshold of
0.0001. These curves have been superposed in Figures 12(a) and 12(b)
by a solid red line, respectively.

Finally, we would like to emphasize that besides the dependence on
specific choice of threshold involved in Equations (21) and (22) to meet
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(a) (b)

Figure 12. Contours of (a) RMSE and (b) 1-SSIM of TOF-PET
reconstructed images as a function of the range of angle ϕ, and the
TOF resolution t, for configuration B. The red solid lines represent
the phase transition curves with a RMSE threshold of 0.05.

the specific requirement on imaging quality, these phase transition
curves are also highly dependent on the structural complexity (or
information content) of the phantom used. Using the CS terminology,
we would like to use the “sparsity degree” to measure it. Therefore, it
is appealing and instructive to carry out the further analysis of Nc(t)
and ϕc(t) on more phantoms. We will leave it for future work.

4. CONCLUSIONS

Owing to the consideration of reducing hardware cost and improving
reconstruction quality, this paper first studied the benefits of sparsity-
promoted reconstruction for two different undersampling TOF-PET
configurations. Two major contributions of this paper are as follows:
(1) we developed an efficient algorithm for the combined sparse
reconstruction of p-TV and l1-norm to deal with TOF-PET imaging,
which renders us an important conclusion that 0.5-TV regularization
is optimal for our problem; (2) we built the relationship between
the number of detectors (or the range of angle) and TOF time
resolution, which provides an empirical guide of designing a novel
low-cost TOF-PET system while ensuring acceptable reconstruction.
Several representative numerical experiments have been provided to
validate the proposed methodology, which demonstrates the promising
applicability of undersampling TOF-PET imaging.
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