Vol. 44
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-17
Wideband Double-Dipole Yagi-Uda Antenna Fed by a Microstrip-Slot Coplanar Stripline Transition
By
Progress In Electromagnetics Research B, Vol. 44, 71-87, 2012
Abstract
This paper describes a wideband double-dipole Yagi-Uda antenna fed by a microstrip-slot coplanar stripline transition. The conventional dipole driver of a Yagi-Uda antenna is replaced by two parallel dipoles with different lengths to achieve multi-resonances, and a small, tapered ground plane is used to allow flexibility in the placement of a pair of reflectors for effective reflection of back-radiated electromagnetic waves. The measured bandwidth of the antenna was 3.48-8.16 GHz for a -10 dB reflection coefficient, with a flat gain of 7.4 ± 0.4 dBi. A two-element array of these antennas was also constructed, with a center-to-center spacing of 36 mm (0.72 λo at 6 GHz) and a common reflector between the elements. The two-element array had a measured bandwidth of 3.56-7.92 GHz, a gain of 8.40-10.43 dBi, a cross-polarization level of <-15 dB, and a mutual coupling of <-16 dB within the impedance-matching bandwidth.
Citation
Son Xuat Ta, Hosung Choo, and Ikmo Park, "Wideband Double-Dipole Yagi-Uda Antenna Fed by a Microstrip-Slot Coplanar Stripline Transition," Progress In Electromagnetics Research B, Vol. 44, 71-87, 2012.
doi:10.2528/PIERB12080605
References

1. Qian, Y., W. R. Deal, N. Kaneda, and T. Itoh, "Microstrip-fed quasi-Yagi antenna with broadband characteristics," Electronics Letters, Vol. 34, No. 23, 2194-2196, Nov. 1998.
doi:10.1049/el:19981583

2. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Simplified feed for modified printed Yagi antenna," Electronics Letters, Vol. 40, No. 8, 464-466, Apr. 2004.
doi:10.1049/el:20040348

3. Alhalabi, R. and G. Rebeiz, "High-gain Yagi-Uda antennas or millimeter-wave switch-beam systems," IEEE Transactions on Antennas and Propagations, Vol. 57, No. 11, 3672-3676, Nov. 2009.
doi:10.1109/TAP.2009.2026666

4. Bayderkhani, R. and H. R. Hassani, "Wideband and low sidelobe linear series fed Yagi-like antenna array," Progress In Electromagnetics Research B, Vol. 17, 153-167, 2009.
doi:10.2528/PIERB09072502

5. Qu, S. W. and Q. Y. Chen, "Dual-antenna system composed of patch array and planar Yagi antenna for elimination of blindness in cellular mobile communications," Progress In Electromagnetics Research C, Vol. 21, 87-97, 2011.

6. Lin, S., "Novel printed Yagi-Uda antenna with high-gain and broadband," Progress In Electromagnetics Research Letters, Vol. 20, 107-117, 2011.

7. Kan, H. K., R. B. Waterhouse, A. M. Abbosh, and M. E. Bialkowski, "Simple broadband planar CPW-fed quasi-Yagi antenna," IEEE Antennas Wireless and Propagation Letters, Vol. 6, 18-20, 2007.
doi:10.1109/LAWP.2006.890751

8. Ta, S. X., B. Kim, H. Choo, and I. Park, "Slot-line-fed quasi-Yagi antenna," International Symposium on Antennas, Propagation, and EM Theory, 307-310, Guangzhou, China, 2010.

9. Woo, D. S., Y. G. Kim, K. W. Kim, and Y. K. Cho, "Design of quasi-Yagi antennas using an ultra-wideband balun," Microwave and Optical Technology Letters, Vol. 50, No. 8, 781-784, Aug. 2008.
doi:10.1002/mop.23563

10. Ma, T., C. Wang, R. Hua, and J. Tsai, "A modified quasi-Yagi antenna with a new compact microstrip-to-coplanar strip transition using artificial transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2469-2474, Aug. 2009.
doi:10.1109/TAP.2009.2024577

11. Sor, J., Y. Qian, and T. Itoh, "Coplanar waveguide fed Quasi-Yagi antenna," Electronics Letters, Vol. 36, No. 1, 1-2, Jan. 2000.
doi:10.1049/el:20000132

12. Truong, L. H., Y. H. Baek, M. K. Lee, S. W. Park, S. J. Lee, and J. K. Rhee, "A high-performance 94 GHz planar quasi-Yagi antenna on GaAs substrate," Microwave and Optical Technology Letters, Vol. 51, No. 10, 2396-2400, Jul. 2009.
doi:10.1002/mop.24628

13. Chang, D., C. Chang, and J. Liu, "Modified planar quasi-Yagi antenna for WLAN dual-band operations," Microwave and Optical Technology Letters, Vol. 46, No. 8, 443-446, Sep. 2005.
doi:10.1002/mop.21012

14. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
doi:10.2528/PIER06012001

15. Steyn, J. M., J. W. Odendaal, and J. Joubert, "Double dipoles antenna for dual-band wireless local area networks applications," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2034-2038, Sep. 2008.
doi:10.1002/mop.24540

16. Xin, , Q., F. S. Zhang, B. H. Sun, Y. L. Zou, and Q. Z. Liu, "Dual-band Yagi-Uda antenna for wireless communications," Progress In Electromagnetics Research Letters, Vol. 16, 119-129, 2010.
doi:10.2528/PIERL10051602

17. Wu, S., C. Kang, K. Chen, and J. Tarng, "A multiband quasi-Yagi type antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 593-596, Feb. 2010.
doi:10.1109/TAP.2010.2041522

18. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Wide-band modified printed bow-tie antenna with single and dual polarization for C- and X-band applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 3067-3072, Sep. 2005.
doi:10.1109/TAP.2005.851870

19. Chen, K., X. Chen, and K. Huang, "A novel microstrip dipole antenna with wideband and end-fire properties," Journal of Electromagnetic Waves and Application, Vol. 21, No. 12, 1679-1688, 2007.

20. Eldek, A. A., "Ultrawideband double rhombus antenna with stable radiation patterns for phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 84-91, Jan. 2007.
doi:10.1109/TAP.2006.886560

21. Han, K., Y. Park, and I. Park, "Broadband CPS-fed Yagi-Uda antenna," Electronics Letters, Vol. 45, No. 24, 1207-1209, Dec. 2009.
doi:10.1049/el.2009.1330

22. Alhalabi, R. and G. Rebeiz, "Differentially-fed millimeter-wave Yagi-Uda antennas with folded dipole feed," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 966-969, Mar. 2010.
doi:10.1109/TAP.2009.2039320

23. Zinieris, M. M., R. Sloan, and L. E. Davis, "A broadband microstrip-line-to-slot-line transition," Microwave and Optical Technology Letters, Vol. 18, No. 5, 339-342, Aug. 1998.
doi:10.1002/(SICI)1098-2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9