Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-18
Unidirectional Antenna Using Two-Probe Excited Circular Ring Above Square Reflector for Polarization Diversity with High Isolation
By
Progress In Electromagnetics Research, Vol. 133, 159-176, 2013
Abstract
This paper presents a circular ring antenna fed by two perpendicular probes, both of which are placed above the square reflector. The antenna is employed to radiate unidirectional beam for polarization diversity reception. A linear isolator is added to improve the isolation between the two probes. The antenna is proposed for the point-to-point communication of Wireless Local Area Network (WLAN) system according to the IEEE 802.11a standard in which the allocated frequency band ranges from 5.150 GHz to 5.825 GHz. The proposed antenna is compact and suitable for mass production. Without the dielectric material, the antenna is free of dielectric loss and capable of high power handling. The prototype antenna was fabricated and measured to verify the theoretical predictions. At the center frequency, the unidirectional pattern with the measured half-power beamwidths in two principal planes of 65 and 75 degrees is achieved. The front-to-back ratio is 31 dB, and the antenna gain is 7.42 dBi. The |S11| and |S21| are respectively -23.09 dB and -33.99 dB; the obtained bandwidth is 23.64%. Based on the aforementioned characteristics, the antenna is a potential candidate for polarization diversity of WLAN applications.
Citation
Souphanna Vongsack, Chuwong Phongcharoenpanich, Sompol Kosulvit, Kazuhiko Hamamoto, and Toshio Wakabayashi, "Unidirectional Antenna Using Two-Probe Excited Circular Ring Above Square Reflector for Polarization Diversity with High Isolation," Progress In Electromagnetics Research, Vol. 133, 159-176, 2013.
doi:10.2528/PIER12080110
References

1. IEEE Std. 802.11, Part 11 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1997.

2. IEEE Std. 802.11a, Supplement to Part 11 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher-Speed Physical Layer Extension in the 5 GHz Band , 1999.

3. Chreim, H., E. Pointereau, B. Jecko, and P. Dufrane, "Omnidirectional electromagnetic band gap antenna for base station applications," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 499-502, 2007.
doi:10.1109/LAWP.2007.904716

4. Freytag, L., E. Pointereau, and B. Jecko, "Omnidirectional dielectric electromagnetic band gap antenna for base station of wireless network," Proceedings of IEEE Antennas and Propagation Society International Symposium, Vol. 1, 815-818, 2004.

5. Tsai, C.-L., "A coplanar-strip dipole antenna for broadband circular polarization operation," Progress In Electromagnetics Research, Vol. 121, 141-157, 2011.
doi:10.2528/PIER11082407

6. Wounchoum, P., D. Worasawate, C. Phongcharoenpanich, and M. Krairiksh, "A switched-beam antenna using circumferential-slots on a concentric sectoral cylindrical cavity excited by coupling slots," Progress In Electromagnetics Research, Vol. 120, 127-141, 2011.

7. Eom, S.-Y., Y.-B. Jung, S. A. Ganin, and A. V. Shishlov, "A cylindrical shaped-reflector antenna with a linear feed array for shaping complex beam patterns," Progress In Electromagnetics Research, Vol. 119, 477-495, 2011.
doi:10.2528/PIER11062912

8. Quan, X. L., R. L. Li, J. Y. Wang, and Y. H. Cui, "Development of a broadband horizontally polarized omnidirectional planar antenna and its array for base stations," Progress In Electromagnetics Research, Vol. 128, 441-456, 2012.

9. Wei, K. P., Z. J. Zhang, and Z. H. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 126, 101-120, 2012.
doi:10.2528/PIER11112101

10. Li, R. L., T. Wu, and M. M. Tentzeris, "A triple-band unidirectional coplanar antenna for 2.4/3.5/5-GHz WLAN/WiMax applications," Proceedings of IEEE Antennas and Propagation Society International Symposium, 1-4, 2009.
doi:10.1109/APS.2009.5171962

11. Sze, J.-Y. and S.-P. Pan, "Design of broadband circularly polarized square slot antenna with a compact size," Progress In Electromagnetics Research, Vol. 120, 513-533, 2011.

12. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

13. Fuschini, F., H. El-Sallabi, V. Degli-Esposti, L. Vuokko, D. Guiducci, and P. Vainikainen, "Analysis of multipath propagation in urban environment through multidimensional measurements and advanced ray tracing simulation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 848-857, 2008.
doi:10.1109/TAP.2008.916893

14. Wang, X., Z. Du, and K. Gong, "A compact wideband planar diversity antenna covering UMTS and 2.4 GHz WLAN bands," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 588-591, 2008.
doi:10.1109/LAWP.2008.2000664

15. Peng, H.-L., W.-Y. Yin, J.-F. Mao, D. Huo, X. Hang, and L. Zhou, "A compact dual-polarized broadband antenna with hybrid beam-forming capabilities," Progress In Electromagnetics Research, Vol. 118, 253-271, 2011.
doi:10.2528/PIER11042905

16. Ding, Y., Z. Du, K. Gong, and Z. Feng, "A novel dual-band printed diversity antenna for mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2088-2096, 2007.
doi:10.1109/TAP.2007.900249

17. Toh, W., Z. Chen, X. Qing, and T. See, "A planar UWB diversity antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3467-3473, 2009.
doi:10.1109/TAP.2009.2024131

18. Perini, P. L. and C. L. Holloway, "Angle and space diversity comparisons in different mobile radio environments," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 6, 764-775, 1998.
doi:10.1109/8.686760

19. Laneman, J. N., G. W. Wornell, and D. N. C. Tse, "An efficient protocol for realizing cooperative diversity in wireless networks," Proceedings of IEEE Information Symposium on Information Theory, 294, 2001.

20. Brown, T. W. C., R. Saunders, S. Stavrou, and M. Fiacco, "Characterization of polarization diversity at the mobile," IEEE Transactions on Vehicular Technology, Vol. 56, No. 5, 2440-2447, 2007.
doi:10.1109/TVT.2007.898371

21. Li, X., X. Huang, Z. Nie, and Y. Zhang, "Equivalent relations between interchannel coupling and antenna polarization coupling in polarization diversity systems," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1709-1715, 2007.
doi:10.1109/TAP.2007.898508

22. Krairiksh, M., P. Keowsawat, C. Phongcharoenpanich, and S. Kosulvit, "Two-probe excited circular ring antenna for MIMO application," Progress In Electromagnetics Research, Vol. 97, 417-431, 2009.
doi:10.2528/PIER09091607

23. Xie, J.-J., Y.-Z. Yin, J. Ren, and T. Wang, "A wideband dual-polarized patch antenna with electric probe and magnetic loop feeds," Progress In Electromagnetics Research, Vol. 132, 499-515, 2012.

24. Su, D., J. J. Qian, H. Yang, and D. Fu, "A novel broadband polarization diversity antenna using a cross-pair of folded dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 433-435, 2005.
doi:10.1109/LAWP.2005.860191

25. Eggers, P. C. F., J. Toftgard, and A. M. Oprea, "Antenna systems for base station diversity in urban small and micro cells," IEEE Journal on Selected Areas in Communications, Vol. 11, No. 7, 1046-1057, 1993.
doi:10.1109/49.233217

26. Lee, B., S. Kwon, and J. Choi, "Polarization diversity microstrip base station antenna at 2 GHz using T-shaped aperture-coupled feeds," Proceedings of IEE Microwave, Antennas and Propagation, Vol. 148, No. 5, 334-338, 2001.
doi:10.1049/ip-map:20010730

27. Dietrich, C. B., W. L. Stutzman, Jr., B. Kim, and K. Dietze, "Smart antennas in wireless communications: Base-station diversity and handset beamforming," IEEE Antennas and Propagation Magazine, Vol. 42, No. 5, 142-151, 2000.
doi:10.1109/74.883513

28. Ou Yang, J., S. Bo, J. Zhang, and Y. Feng, "A low-profile unidirectional cavity-backed log-periodic slot antenna," Progress In Electromagnetics Research, Vol. 119, 423-433, 2011.
doi:10.2528/PIER11070503

29. Xie, J.-J., Y.-Z. Yin, C. W. Zhang, and B. Li, "A novel trapezoidal slot patch antenna with a beveled ground plane for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 27, 53-62, 2011.
doi:10.2528/PIERL11091907

30. Cai, D. S., Z.-Y. Lei, H. Chen, G.-L. Ning, and R. B. Wang, "Crossed oval-ring slot antenna with triple-band operation for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 27, 141-150, 2011.
doi:10.2528/PIERL11092810

31. Liu, W.-C. and Y. Dai, "Dual-broadband twin-pair inverted-L shaped strip antenna for WLAN/WIMAX applications," Progress In Electromagnetics Research Letters, Vol. 27, 63-73, 2011.
doi:10.2528/PIERL11091309

32. Wang, X.-M., Z.-B. Weng, Y.-C. Jiao, Z. Zhang, and F.-S. Zhang, "Dual-polarized dielectric resonator antenna with high isolation using hybrid feeding mechanism for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 18, 195-203, 2010.
doi:10.2528/PIERL10101005

33. Rezaeieh, S. A. and M. Kartal, "A new triple band circularly polarized square slot antenna design with crooked T and F-shape strips for wireless applications," Progress In Electromagnetics Research, Vol. 121, 1-18, 2011.
doi:10.2528/PIER11081506

34. Panda, J. R. and R. S. Kshetrimayum, "A printed 2.4 GHz/5.8 GHz dual-band monopole antenna with a protruding stub in the ground plane for WLAN and RFID applications," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011.

35. Weng, W.-C. and C.-L. Hung, "Design and optimization of a logo-type antenna for multiband applications," Progress In Electromagnetics Research, Vol. 123, 159-174, 2012.
doi:10.2528/PIER11102705

36. CST-Microwave Studio, User's Manual, 2006.

37. Kosulvit, S., M. Krairiksh, C. Phongcharoenpanich, and T. Wakabayashi, "A simple and cost-effective bidirectional antenna using a probe excited circular ring," IEICE Trans. Electronics, Vol. E84-C, No. 4, 443-450, 2001.