Vol. 27
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-13
Determination of the Convex Hull of a Radiating System in a Heterogeneous Background
By
Progress In Electromagnetics Research M, Vol. 27, 41-57, 2012
Abstract
Recently, referring to a homogeneous background, a new technique estimating the minimum convex hull of a source/scattering system from the radiated/scattered electromagnetic field data has been presented. In this paper, the approach is extended to the inhomogeneous background case by considering the source/scattering system and the observation domain embedded in two different homogeneous media. The underlying theory has been properly reformulated to account for the refraction phenomenon arising at the electromagnetic discontinuities boundaries by considering a 2D geometry. The performances of the technique have been estimated by means of a numerical analysis whose main representative results are presented and discussed in the paper.
Citation
Amedeo Capozzoli, Giuseppe D'Elia, and Pietro Vinetti, "Determination of the Convex Hull of a Radiating System in a Heterogeneous Background," Progress In Electromagnetics Research M, Vol. 27, 41-57, 2012.
doi:10.2528/PIERM12072708
References

1. Kleinman, R. E. and P. M. Van Der Berg, "Two dimensional location and shape reconstruction," Radio Sci., Vol. 29, 1157-1169, Jul.-Aug. 1994.
doi:10.1029/93RS03445

2. Lesselier, S. D., B. Duchene, and , "Wavefield inversion of objects in stratified environments. From backpropagation schemes to full solutions," Review of Radio Sci. 1993-1996, W. W. R. Stone, Ed.,235{268, Oxford University Press, 1996.

3. Belkebir, K., R. E. Kleinman, and C. C. Pichot, "Microwave imaging-location and shape reconstruction from multi-frequency scattering data," IEEE Trans. Microwave Theory Tech., Vol. 45, Apr. 1997.
doi:10.1109/22.566625

4. Lambert, M., D. Lesselier, and B. J. Kooij, "The retrieval of a buried cylindrical obstacle by a constrained modified gradient method in the H-polarization case and for Maxwellian materials," Inverse Problems, Vol. 14, No. 5, 1265-1283, Oct. 1998.
doi:10.1088/0266-5611/14/5/011

5. Yaman, F., "Location and shape reconstructions of sound-soft obstacles buried in penetrable cylinders," Inverse Problems, Vol. 25, No. 6, 065005, Jun. 2009.
doi:10.1088/0266-5611/25/6/065005

6. Capozzoli, A. and G. D'Elia, "Global optimization and antennas synthesis and diagnosis, Part one: Concepts, tools, strategies and performances," Progress In Electromagnetics Research, Vol. 56, 195-232, 2006.
doi:10.2528/PIER04123001

7. Capozzoli, A. and G. D'Elia, "Global optimization and antennas synthesis and diagnosis, Part two: Applications to advanced re°ector antennas synthesis and diagnosis techniques," Progress In Electromagnetics Research, Vol. 56, 233-261, 2006.
doi:10.2528/PIER05032503

8. Bucci, O. M., A. Capozzoli, and G. D'Elia, "Determination of the convex hull of radiating or scattering systems: A new, simple and effective approach," Inverse Problems, Vol. 18, 1621-1638, Dec. 2002.
doi:10.1088/0266-5611/18/6/313

9. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Imposing Zernike representation for imaging two-dimensional targets," nverse Problems, Vol. 25, No. 3, 035012, Mar. 2009.
doi:10.1088/0266-5611/25/3/035012

10. Potthast, R., J. Sylvester, and S. Kusiak, "A range test for determining scatterers with unknown physical properties," Inverse Problems, Vol. 19, No. 3, 533-547, Jun. 2003.
doi:10.1088/0266-5611/19/3/304

11. Bucci, O. M., A. Capozzoll, C. Curcio, and G. D'Elia, "The experimental validation of a technique to find the convex hull of a scattering systems from field data," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 539-542, Jun. 22-27, 2003.

12. Capozzoli, A., O. M. Bucci, G. D'Elia, and P. Vinetti, "A new technique finding the convex hull of a scattering system: Performance analysis and application to inhomogeneous backgrounds," Proc. URSI, 909-911, May 23-27, 2004.

13. Bucci, O. M., A. Capozzoli, and G. D'Elia, "A novel approach to scatterer localization problem," IEEE Trans. on Antennas and Propagation, Vol. 51, No. 8, 2079-2090, Aug. 2003.
doi:10.1109/TAP.2003.812233

14. Daubechies, I., Ten Lectures on Wavelets and Applied Mathematics,, Society for Industrial and Applied Mathematics , 1992.
doi:10.1137/1.9781611970104

15. Born, M. and E. Wolf, Principles of Optics,, 7th Ed., Cambridge Press University, 1999.

16. Capozzoli, A., "A novel approach to shape reconstruction from field data," Atti della XIV Riunione Nazionale di Elettromagnetismo, Atti della XIV RiNEm, Riunione Nazionale di Elettromagnetismo (RiNEm), Ancona, Italia, Sep. 16-19, 2002.

17. Bucci, O. M., C. Gennarelli, and C. Savarese, "Representation of electromagnetics field over arbitrary surfaces by a finite and non redundant number of samples," IEEE Trans. on Antennas and Propagation, Vol. 46, No. 3, Mar. 1998.
doi:10.1109/8.662654