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Abstract—Recently, referring to a homogeneous background, a
new technique estimating the convex hull of a source/scattering
system from the radiated/scattered electromagnetic field data has
been presented. In this paper, the approach is extended to the
inhomogeneous background case by considering the source/scattering
system and the observation domain embedded in two different
homogeneous media. The underlying theory has been properly
reformulated to account for the refraction phenomenon arising at
the electromagnetic discontinuities boundaries by considering a 2D
geometry. The performances of the technique have been estimated
by means of a numerical analysis whose main representative results
are presented and discussed in the paper.

1. INTRODUCTION

The determination of the convex hull containing a set of electromag-
netic sources/scatterers, the Observed System (OS), later on, from the
knowledge of the radiated/scattered field, the observed field (OF) later
on, on an observation domain is a problem of relevant interest, both
from the theoretical and practical point of view, in the framework of
Inverse Source (IS) or Inverse Scattering (ISC) problems.

As a matter of fact, many applications, from the detection of
voids and reinforcements in concrete to the detection of mines or
underground cavities, involve the solution of ISC problems [1–5].

Basically, the solving approach relies on the optimization of an
objective functional, which, in principle, due to the missing of a
priori information, should require global optimization procedures to
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avoid false solutions corresponding to the trapping into local optima.
Unfortunately, global optimization could turn to be unfeasible due
to the high computational burden required, and the ill-conditioning
that could often affect it [6, 7]. Thus, in almost any practical case,
the optimization is performed by exploiting local procedures, which
seriously affects the reliability of the solutions.

Obviously, any a-priori information can mitigate the above
difficulties, since it can provide a more favorable starting point of the
searching. In particular, any information restricting the investigation
region allows reducing the occurrence of local minima as well as the
computational load [8–10].

The knowledge of the convex hull containing the observed system
provides very useful information. Obviously, a convex hull finding
technique represents a valuable tool only if it requires a negligible effort,
as compared to the one necessary to solve the full inverse problem.

On the other side, as referred above, there are relevant applications
wherein the knowledge of the convex hull of an OS is of interest by
itself, as, f.i., in the case of mine or concrete voids detection.

However, the convex hull finding technique presented and
experimentally verified in [8, 11, 12] has been formulated in the case of
homogeneous backgrounds in the sense that both the observed system
and the observation line are essentially embedded in the same medium.

The aim of this paper is to generalize the approach to the
inhomogeneous case, wherein the observation line and the observed
system are embedded in two different homogeneous media with
different electromagnetic properties, as depicted in Fig. 1.
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Figure 1. Geometry of the problem: (C) observation curve, (OS )
observed system and (H) convex hull.
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The paper is organized as follows. The theory underlying
the proposed technique and the solution strategy are presented in
Section 2, while Section 3 and Section 4 are focused on the case
of two geometries of practical interest: a line discontinuity with a
line observation domain and a circular discontinuity with a circular
observation domain, respectively.

The main representative results of a wide numerical analysis
carried out to evaluate the performances of the technique for the two
considered geometries are discussed in Section 5.

Conclusions are drawn in Section 6.

2. UNDERLYING THEORY AND SOLUTION
STRATEGY

Let us consider the geometry depicted in Fig. 1, relative to a 2D
OS analyzed in the case of a scalar, single frequency/single view
configuration. The exp(jωt) field time dependence will be omitted
later on when writing the expressions for the field.

The background region is characterized by two media, say A and B
(white and gray areas in Fig. 1), with electromagnetic parameters and
wavelengths, εA, µA, λA and εB, µB, λB, respectively. We assume
that medium A contains the observation curve, whose parametric
representation is denoted with P (ξ). On the other hand, medium B is
assumed to contain OS, composed of N radiators/scatterers whose sizes
are assumed to be small or comparable with λB and whose spacings
are assumed to be larger than 2÷ 3λB.

As in [8], the technique here proposed resides on the local
properties of the radiated/scattered field [13], which is here applied
to the inhomogeneous case.

To this end, let us consider a reference system (O, x, y) and denote
with E(ξ) and E(ξ, r n) the OF at P (ξ) and the contribution from the
n-th radiator/scatterer, respectively. By generalizing [8], let us define
the “reduced” field FT (ξ) with respect to a reference point T as

FT (ξ) = E(ξ) · exp {jβρT (ξ)} (1)

where ρ
T
(ξ) = r(ξ) − rT , ρT (ξ) =

∣∣∣ρ
T
(ξ)

∣∣∣, r(ξ) and rT are the
position vectors locating the observation and reference points P and
T , respectively, and β = 2π/λ0 (no losses are assumed in the media),
λ0 being the wavelength.

The spatial local properties of the field can be analyzed by means
of the sliding window spectrum [14], i.e., the local Fourier transform of
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the reduced field around a point P (ξ):

F̃T (κ, ξ) =
∫

FT

(
ξ′

)
g

(
ξ′ − ξ

)
exp

(−jκξ′
)
dξ′

=
∫

E
(
ξ′

)
exp

[
jβρT

(
ξ′

)]
g

(
ξ′ − ξ

)
exp

(−jκξ′
)
dξ′ (2)

where g(ξ) is a windowing function and κ is the variable conjugate to
ξ.

First, let us consider a point-wise radiator/scatterer, f.i., the n-th
component of the OS located at r n. By exploiting the Sommerfeld-
Runge [15] conjecture†, the corresponding electromagnetic field on the
observation line, say E(ξ, r n), can be expressed as:

E(ξ, r n) = E0(ξ, r n) exp[−jβS(ξ, r n)] (3)

where E0(ξ, r n) and S(ξ, r n) are a complex and a real function,
respectively, slowly varying on spatial intervals comparable to λ0.

From Eq. (2), the sliding window spectrum of the n-th contribute
to the reduced OF, say F̃T (κ, ξ, r n), is given by:

F̃T (κ, ξ, r n)=
∫

E0

(
ξ′, r n

)
g
(
ξ′−ξ

)
exp

[
jψ

(
ξ′, r n

)]
exp

(−jκξ′
)
dξ′(4)

ψ (ξ, r n)=β [ρT (ξ)− S (ξ, r n)] (5)

Accordingly, in the geometrical optics approximation, i.e., when
β → +∞, the integral in Eq. (4) can be asymptotically evaluated
by the stationary phase method. Neglecting end points and/or slope
contributions, only stationary points, roots of the equation:

−dψ

dξ
+ κ = 0 (6)

give a significant contribution to F̃T (κ, ξ, r n), provided that they fall
inside the sliding window. Therefore, for a given value of the parameter
ξ, the sliding window spectrum is significantly different from zero for
those values of κ such that:

κ ≈ dψ

dξ
= hT (ξ, r n) (7)

Hence, the function hT (ξ, r n) provides the spatial local
bandwidth, around the point P (ξ), of the reduced (with respect to T )
field radiated by the n-th component of the OS. According to [8, 13],
the function hT (ξ, r n) will be called Point Source Spectral Content
(PSSC) of the point-wise source/radiator located at r n.
† It is assumed that the working conditions are not too far from those of Geometrical
Oprtics.
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Since each element of the OS contributes to the OF at the
point P (ξ), it can be assumed that the spatial Local (Reduced) Field
Bandwidth (LRFB or simply LFB), say wT (ξ), of the reduced OF
by the whole OS accounts for the contribution (the PSSCs) of each
element, each one centered on the relative PSSC, as:

wT (ξ) = max
r n

|hT (ξ, r n)| = max
r n

∣∣∣∣β
∂[ρT (ξ)− S(ξ, r n)]

∂ξ

∣∣∣∣ (8)

It must be noted that such contributions are related to and
contains information on the position of each radiator/scatterer.
Accordingly, information on these positions, useful to find the convex
envelope of the whole OS, could be obtained once the LFB has been
properly estimated. However, in principle, since these contributions
sum up coherently, an interference effect can occur, in an unpredictable
way, making difficult to distinguish each contribution from the
estimated LFB [16]. In this case, an incoherent multi-illumination
should be exploited as in [16]. In the following, thanks to the
assumptions that the radiators/scatterers are not too close each other,
the LFB can be correctly estimated from the field data without
exploiting the strategy in [16].

It’s worth noting that, for a given reference point T , the LFB is a
function of ξ only. On the other hand, if the point P (ξ) is fixed while
the reference point T is moved along a curve, wT (ξ) varies due to the
hidden dependence of ρT (ξ) on T . As shown in [17], the minimum
value of wT (ξ) is attained when the following condition is verified:

dψ

dξ
=

β

2

[
max
r n

∂S

∂ξ
+ min

r n

∂S

∂ξ

]
(9)

The corresponding minimum value of the LFB is given by:

wmin = min
T

wT (ξ) = wT ∗(ξ)(ξ) =
β

2

[
max
r n

∂S

∂ξ
−min

r n

∂S

∂ξ

]

=
β

2

[
max
r n

∂S

∂s
−min

r n

∂S

∂s

]
ds

dξ
(10)

where s is the curvilinear abscissa on the curve C and T ∗(ξ) is the
reference point where wT (ξ) attains its minimum value.

Obviously, these results include also the homogeneous case. In
fact, when εA = εB and µA = µB the rays arising from the n-th element
propagate unperturbed along straight trajectories and the eikonal
function S reduces essentially to the distance: R(ξ, r′ n) = |r(ξ)− r n|,
thus obtaining the results provided in [8]. In particular, in [8] wmin is
shown to be related to the minimum angular sector under which the
OS is “seen” from the point P (ξ).
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Similarly, in the next two Sections, it will be shown that in the
inhomogeneous case, wmin is related to the closest optical rays from
the point P that, after refraction on the boundary discontinuity, fully
encloses the OS.

Accordingly, the approach here presented, exploiting Eq. (10),
finds the convex hull of the OS by the following steps:

i) The scattered field on the observation line C is acquired;
ii) The line Γ wherein the reference point T will be located is chosen;
iii) For each observation point on the observation line C corresponding

to the parameter ξ, the reference point T is moved along Γ; for
each position of T , given the OF measured on the observation line,
the sliding window spectrum is evaluated and wT (ξ) estimated.
Among all the positions of T , the reference point, say T ∗(ξ),
corresponding to that providing the minimum value for wT (ξ) is
found together with such a minimum, wT min(ξ) say;

iv) Thanks to the knowledge of both T ∗(ξ) and wT min(ξ), the two
extreme rays stemming from the point P (ξ) are traced such that,
after refraction through the discontinuities, the minimum angular
region including the OS is given (see Sections 3 and 4 for the
formulas related to the cases of rectilinear and circular lines);

v) Choose another observation point on C and repeat the operations
at points iii) and iv);

vi) Estimate the convex hull as the intersection of all the angular
regions corresponding to all the considered observation points on
C.
The equations required to evaluate the two optical rays stemming

from each observation point P (ξ) that, after the refraction through
the discontinuities, gives the minimum angular region including the
scattering system, depend on C and Γ, and are given in Sections 3 and
4 for the geometries here considered.

3. THE CASE OF A RECTILINEAR DISCONTINUITY
AND OBSERVATION CURVE

Let’s consider the case of a rectilinear discontinuity, depicted in Fig. 2
with equation y = yd, and a rectilinear observation curve with equation
y = yobs.

The parameter ξ is now assumed equal to x and the PSSC of the
field due to the n-th scatterer can be easily evaluated from (7) putting
ξ = x and taking into account that

∂

∂x
|r − r T | = îρT · îx = cos[φT (x)] (11)
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Figure 2. Geometry of the problem in the linear case.

and
∂S

∂x
= ∇S · îx = nAîAt · îx = nA cos[α(x, r n)] (12)

where îρT and îx are the unit vectors of the vector ρ
T
(x) and of the

x-axis, respectively, φT (x) is the angle between them, îAt is the unit
vector of the ray stemming, in the medium A, from the n-th scattering
element and reaching P (x), and α(x, r′n) is the angle between îAt and
îx.

From Eqs. (5), (7), (11) and (12) one obtains:
hT (x, r n) = β[cosφT (x)− nA cosα(x, r n)] (13)

To find wmin(x) and T ∗(x) let us fix P (x) and move the reference
point T along a line Γ parallel to the x axis (Fig. 3) so that the second
term in the bracket of Eq. (13) varies with T while the first one stays
constant. It is noted that Γ could be also a non rectilinear curve, and
can also intersect the observed system. As shown in [8], the minimum
value for wT (x) is achieved when:

cos
[
φT ∗(x)(x)

]
=

1
2

{
max
r n

[nA cosα(x, r n)] + min
r n

[nA cosα(x, r n)]
}

(14)

and is equal to:

wmin(x)=wT ∗(x)(x)=
β

2

{
max
r n

[nA cosα(x, r n)]−min
r n

[nA cosα(x, r n)]
}

(15)
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Figure 3. Determination of the angular region M(x).

Accordingly, from the knowledge of wmin(x) and T ∗(x) (and,
thus cos[φT ∗(x)(x)]), obtained by suitably processing the OF on the
observation line C, the values of αmin(x) and αmax(x) such that:

cosαmin(x) = max
r n

[cosα(x, r n)]

cosαmax(x) = min
r n

[cosα(x, r n)]
(16)

can be found from Eqs. (14) and (15).
It is worth noting that αmin and αmax define the two optical rays

stemming from P (x) that, after refraction at the discontinuity, give the
minimum angular region, say M(x), containing the OS (see Fig. 3).

According to the point vi) in the previous Section, an estimate
of the convex hull enclosing the radiating system is achieved by
intersecting all the regions M(x) corresponding to all the considered
observation points.

Obviously, the choice of the line Γ must ensure the attainment
of wmin(x). According to the previous considerations, this is ensured
when Γ is long enough and located between the OS and the observation
line.

4. THE CASE OF A CIRCULAR OBSERVATION
DOMAIN

Let’s now consider a different background arrangement, depicted in
Fig. 4. B is a circular medium (the grey region in the figure) with
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Figure 4. Geometry of the problem in the circular case.

radius rd, containing the scattering system, and is immersed in the
medium A (white in the figure). According to the geometry of the
problem, it is convenient to introduce a polar reference system (O, r, θ)
centered on the region B, and to chose as observation domain, C, a
circumference of radius robs > rd concentric with B.

The parameter ξ is now assumed equal to θ, and, from (7), the
PSSC of a given elementary source/scatterer is given by:

hT (ϑ, r n) =
∂

∂ϑ
β [|r(ϑ)− rT | − S(ϑ, r n)]

= β[cos(φT (ϑ))− nA cos(α(ϑ, r n))] (17)

where α(θ, r n) is the angle between îϑ and îAt and φ(θ) is the angle
between and îρT and îϑ, îϑ being the unit angular vector, îρT the unit
vector joining T to P (θ) and îAt the unit vector of the optical ray
arriving at P (θ) from the point-wise source/scatterer located at r n

(See Fig. 4).
Again, for a given observation point P (θ), when moving the

reference point T along a line Γ, parallel to the x-axis, only the first
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term in the bracket of Eq. (17) varies, and it attains its minimum value:

wmin(ϑ) = wT ∗(ϑ)(ϑ)

=
β

2

{
max
r n

[nA cosα(ϑ, r n)]−min
r n

[nA cosα(ϑ, r n)]
}

(18)

as long as the reference point T attains the point T ∗(ϑ) such that:

cos[φT ∗(ϑ)(ϑ)]=
1
2

{
max
r n

[nA cosα(ϑ, r n)]+min
r n

[nA cosα(ϑ, r n)]
}

(19)

Therefore, once the point T ∗(ϑ) and the value of wmin(ϑ) are found
from the available OF, the relationships (18) and (19) allow to estimate
the value of αmin and αmax as:

cosαmin(ϑ) = max
r n

[cosα(ϑ, r n)]

cosαmax(ϑ) = min
r n

[cosα(ϑ, r n)] (20)

Obviously, αmin and αmax are related to the region M , introduced in
the previous Section (see Fig. 5).

Accordingly, also in this case the estimate of the convex hull is
obtained as the intersection of all the regions M ’s corresponding to all
the considered observation points.

αmax(θ)
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Figure 5. Determination of the angular region M(θ).
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It is worth noting that, at variance of the previous case, now the
observation line surrounds the OS, and a better estimate of the convex
hull is expected.

5. NUMERICAL RESULTS

The effectiveness of the approach has been checked by simulating
numerically the scattered field in a two-dimensional scalar case. The
main results of a wide numerical analysis are reported in the following.

In order to estimate the agreement between the reconstructed
convex envelope and the exact one, a quality figure, say Q, is
considered. Let us denote with E the set of points defining the
estimated envelope and by E0 the exact envelope. We set

Q =
Meas((E ∪ E0))/(E ∩ E0))

Meas(E ∪ E0)
(21)

where Meas() denotes the measure of the set, while ∩ and ∪ denote
the intersection and the union of two sets, respectively. Q is equal to
0 when the envelope is exactly estimated (E ≡ E0) and to 1 when
E ∩ E0 ≡ ∅, ∅ being the void set. To show the performance of the
technique under different working conditions, the cases of metallic only,
or dielectric only scatterers are considered as well as the case of a hybrid
set of metallic and dielectric scatterers.

Furthermore, in the case of only dielectric scatterers, two
configurations corresponding to different contrasts with respect to the
host background are also reported, to show the robustness of the
presented technique against such a parameter.

Let us consider first a set of five copper cylindrical scatterers, with
a diameter equal to 0.2λ0, located at (0, 5λ0), (λ0, 5λ0), (3λ0, 4λ0),
(−4λ0,−3λ0), and (2λ0,−4λ0), embedded in the circular medium B,
with radius 14λ0 and refractive index nb = 2 and a circular observation
domain with radius 20λ0, concentric to B and immersed in a void
space (medium A). The primary source is located outside the scanning
domain at (22λ0, 0).

The estimated angular regions M(θ), corresponding to 24 obser-
vation points uniformly distributed on the observation circumference
are shown in Fig. 6, and the estimated convex hull, whose shape can
be easily appreciated in the figure as the intersection of all the angular
regions, has a Q value equal to 0.44.

Then, the case of a set of five dielectric scatterers is considered
within the same background system of the previous examples. Two
different dielectric configurations are here presented: a low contrast
one with scatterers refractive index ns = 4, and a high contrast one
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y/
λ
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x/λ 0

Figure 6. Convex hull estimate: scattering system made of 5 copper
elements. Black outer circumference: observation domain; red inner
circumference: mediums boundary; blue dashed lines: angular regions;
small red circles: copper scatterers.

with scatterers refractive index ns = 20, whose results are reported
in Figs. 7(a) and 7(b), respectively. Again, the estimated convex hull
can be easily appreciated from the figure as the intersection of all the
angular regions. The values of Q are 0.37 and 0.38, respectively. As
seen, the algorithm results to be effective also in a case of a dielectric
case with a poor contrast.

The case of an heterogeneous scattering system made by three
copper cylinders with diameter equal to 0.2λ0 located at (−2λ0, 5λ0),
(−2λ0, 4λ0) and (5λ0, 2λ0) and three dielectric scatterers, with the
same diameter and a refractive index ns = 4, located at (−4λ0, 2λ0),
(λ0,−5λ0) and (−λ0, 4λ0), has been considered, embedded within the
same background configuration and with the same source position of
the previous examples. The results are shown in Fig. 8(a), and the
value of Q is 0.48. As can be seen, a good convex hull estimate is
obtained, and the dielectric scatterers does not appear shadowed by
the metallic ones.

Then, a completely heterogeneous scattering system is considered
with metallic and dielectric scatterers having different electromagnetic
permittivity. In particular, two metallic scatterers located at
(−5λ0,−3λ0) and (3λ0, 4λ0), and three dielectric scatterers located
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(a) (b)

Figure 7. Convex hull estimate: (a) low contrast dielectric scattering
system; (b) high contrast dielectric scattering elements. Black outer
circumference: observation domain, red inner circumference: boundary
of the inner medium; blue dashed lines: angular regions; small red
triangles: dielectric scatterers.

at (0, 5λ0) (λ0,−6λ0) and (3λ0,−4λ0) with refraction index equal to
ns = 4, ns = 10 and ns = 20, respectively, are considered. The
obtained results are shown in the Fig. 8(b). In this case, Q is equal
to 0.46, confirming that, even in this more general case, the presented
technique provides a fine convex hull estimation.

Then the case of a rectilinear discontinuity and observation line is
analyzed by considering a line discontinuity at y = 0, a primary source
located at (0, 10λ0), an OS embedded in a medium with refraction
index nB = 2, and an observation line in the void with equation
y = 10λ.

In a first case three scattering cylinders with the diameter equal
to 0.2λ0 and located at (−7λ0,−9λ0), (4λ0,−8λ0), and (3λ0,−16λ0)
are considered. The first two are made of copper while the last one
is dielectric, with refraction index ns = 4. The obtained results are
shown in Fig. 9(a).

Then, an OS made of four cylinders with diameter equal to
0.2λ0 and located at (5λ0,−14λ0), (−6λ0,−8λ0), (−6λ0,−15λ0), and
(4λ0,−5λ0), has been considered. The first two are made of copper and
the other ones are dielectric, with ns = 4 and ns = 12, respectively.
The obtained results are shown in Fig. 9(b).

As seen, the technique provides a good estimate, identifying a
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(a) (b)

Figure 8. Convex hull estimate: (a) heterogeneous scattering
system with copper and identical dielectric elements; (b) heterogeneous
scattering system with different dielectric elements. Black outer
circumference: observation line; red inner circumference: boundary of
the inner medium; blue dashed lines: angular regions; small red circle:
copper scatterers; triangle, square, filled square: dielectric scatterers
with ns = 4, ns = 10 and ns = 20, respectively.

(a) (b)

Figure 9. Convex hull estimate: (a) heterogeneous scattering system
with identical dielectric elements; (b) heterogeneous scattering system
with different dielectric elements. Black line: observation domain;
red line: medium boundary, blue lines: angular region; small red
circle: copper scatterers; triangles and squares: dielectric scatterers
with ns = 4 and 10, respectively.
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portion of the plane wherein the OS is located. It is worth noting that,
although, in principle, a theoretical infinite observation domain should
be employed in order to get the actual convex hull, an acquisition
domain few tens of wavelengths long is enough to achieve a good
estimate of the portion of space containing the observed system. As
shown in the figure, this is obtained despite a noticeable lack of
accuracy around the dielectric scatterers, especially close to the one
with the lower refraction index contrast.

In order to show the effect of noise on the reconstruction
algorithm, the case of Fig. 6 has been analyzed by adding a noise
to the scattered field. The values of Q, corresponding to a noise on
the data (assumed a random, independently and uniformly distributed
process) of −20 dB and −30 dB under the field amplitude peak, are
0.59 and 0.51, respectively.

6. CONCLUSIONS

A convex hull finding technique of a radiating/scattering system has
been extended to the case of inhomogeneous backgrounds, allowing
the technique to be applied to a wider, more interesting, class of
problems. Indeed, many practical applications consider OS and
observation domains embedded in two different media with different
electromagnetic properties.

The performed numerical analysis shows that, despite the
approximations of the adopted model, the finding technique provides
a good estimate of the convex hull, even when dealing with a complex
configuration of scatterers. Furthermore, as required, a relatively small
computational burden is needed, as compared to that necessary to solve
the full IS or ISC problem.

Accordingly, the proposed technique can be considered as an
auxiliary effective tool to be used when solving IS or ISC problems as
a pre-conditioner or as a primary tool in all those applications where
the convex hull of the scattering system represents the final result.
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