Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-26
Optical Fiber Extrinsic Micro-Cavity Scanning Microscopy
By
Progress In Electromagnetics Research, Vol. 133, 347-366, 2013
Abstract
An extrinsic Fabry-Perot cavity in optical fiber is used to achieve surface imaging at infrared wavelengths. The micro-cavity is realized by approaching a single mode fiber optic with a numerical aperture NA to a sample and it is fed by a low-coherence source. The measurement of the reflected optical intensity provides a map of the sample reflectivity, whereas from the analysis of the reflected spectrum in the time/spatial domain, we disentangle the topography and contrast phase information, in the limit of nearly homogeneous sample with complex permittivity having Im(ε) << Real(ε). The transverse resolution is not defined by the numerical aperture NA of the fiber and consequently by the conventional Rayleigh limit (about 0.6λ/NA), but it is a function of the transverse field behavior of the electromagnetic field inside the micro-cavity. Differently, the resolution in the normal direction is limited mainly by the source bandwidth and demodulation algorithm. The system shows a compact and simple architecture. An analytical model for data interpretation is also introduced.
Citation
Andrea Di Donato, Antonio Morini, and Marco Farina, "Optical Fiber Extrinsic Micro-Cavity Scanning Microscopy," Progress In Electromagnetics Research, Vol. 133, 347-366, 2013.
doi:10.2528/PIER12072504
References

1. Yu, B., et al. "Analysis of fiber Fabry-Pérot interferometric sensors using low-coherence light sources," IEEE Journal of Lightwave Technology, Vol. 24, No. 4, 1758-1767, Apr. 2006.
doi:10.1109/JLT.2005.863336

2. Murphy, K. A., M. F. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, "Extrinsic Fabry-Pérot optical fiber sensor," Proc. 8th Opt. Fiber Sens. Conf., 193-196, 1992.

3. Furstenau, N., M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, "Extrinsic Fabry-Pérot interferometer vibration and acoustic systems for airport ground tra±c monitoring," Proc. Inst. Elect. Eng. --- Optoelectron, Vol. 144, No. 3, 134-144, 1997.
doi:10.1049/ip-opt:19971268

4. Wang, A., H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, "Self-calibrated interferometric-intensity-based optical fiber sensors ," IEEE Journal of Lightwave Technology, Vol. 19, No. 10, 1495-1501, 2001.
doi:10.1109/50.956136

5. Yao, H.-Y. and T.-H. Chang, "Experimental and theoretical studies of a broadband superluminality in Fabry-Perot interferometer," Progress In Electromagnetics Research, Vol. 122, 1-13, 2012.
doi:10.2528/PIER11092707

6. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702

7. Han, M., Y. Zhang, F. Shen, G. R. Pickrell, and A.Wang, "Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors," Optics Letters, Vol. 29, No. 15, 1736-1738, Aug. 2004.
doi:10.1364/OL.29.001736

8. Chen, J. H., J. R. Zhao, X. G. Huang, and Z. J. Huang, "Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass," Applied Optics, Vol. 49, No. 29, 5592-5596, Oct. 2010.
doi:10.1364/AO.49.005592

9. Zhou, X. and Q. Yu, "Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement," IEEE Sensors Journal, Vol. 11, No. 7, 1602-1606, Jul. 2011.
doi:10.1109/JSEN.2010.2103307

10. Zhang, Y., H. Shibru, K. L. Cooper, and A. Wang, "Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor," Optics Letters, Vol. 30, No. 9, 1021-1023, May 2005.
doi:10.1364/OL.30.001021

11. Wilkinson, P. R. and J. R. Pratt, "Analytical model for low finesse, external cavity, fiber Fabry-Perot interferometers including multiple re°ections and angular misalignment," Applied Optics, Vol. 50, No. 23, 4671-4680, Aug. 2011.
doi:10.1364/AO.50.004671

12. Kilic, O., M. J. F. Digonnet, G. S. Kino, and O. Solgaard, "Asymmetrical spectral response in fiber Fabry-Pérot interferometers," IEEE Journal of Lightwave Technology, Vol. 27, No. 24, 5648-5656, Dec. 2009.
doi:10.1109/JLT.2009.2032135

13. Daniels, D. J., Ground Penetrating Radar, 2nd Ed., IET, London, 2007.

14. Bouma, B. and G. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker, 2002.

15. Isikman, S. O., et al. "Lensfree on-chip microscopy and tomography for biomedical applications," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 3, 1059-1072, May{Jun. 2012.
doi:10.1109/JSTQE.2011.2161460

16. Di Donato, A., M. Farina, A. Morini, G. Venanzoni, D. Mencarelli, M. Candeloro, and M. Farina, "Using correlation maps in a wide-band microwave GPR," Progress In Electromagnetics Research B, Vol. 30, 371-387, 2011.

17. Farina, M., et al. "Disentangling time in a near-field approach to scanning probe microscopy," Nanoscale, Vol. 3, No. 9, 3589-3593, Sep. 2011.
doi:10.1039/c1nr10491h

18. Farina, M., et al. "Algorithm for reduction of noise in ultra-microscopy and application to near-field microwave microscopy," IET Elect. Lett., Vol. 46, No. 1, 50-52, Jan. 2010.
doi:10.1049/el.2010.2859

19. Kaklamani, D. I., "Full-wave analysis of a Fabry-Perot type resonator," Progress In Electromagnetics Research, Vol. 24, 279-310, 1999.
doi:10.2528/PIER99042601

20. Poularikas, A., The Transform and Application Handbook, 2nd Ed., CRC Press, 1999.

21. Lee, D. L., Electromagnetic Principles of Integrated Optics, John Wiley & Sons, 1986.

22. Ramo, S., J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, 1994.

23. Di Donato, A., et al. "Stationary mode distribution and sidewall roughness effects in overmoded optical waveguides," IEEE Journal of Lightwave Technology, Vol. 28, No. 10, 1510-1520, 2010.
doi:10.1109/JLT.2010.2045154

24. Di Donato, A., L. Scalise, and L. Zappelli, "Noncontact speckle-based velocity sensor," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 1, 51-57, 2004.
doi:10.1109/TIM.2003.821482

25. Andretzky, P., et al. "Optical coherence tomography by `spectral radar,' dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, Optical and Imaging Techniques for Biomonitoring IV , Vol. 78, Feb. 1999.