Vol. 35
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-10-19
Applying Effective Medium Theory in Characterizing Dielectric Constant of Solids
By
Progress In Electromagnetics Research Letters, Vol. 35, 145-153, 2012
Abstract
We present a simple approach to measure the dielectric constant of solid materials. In this approach, the powder for the solid under investigation is mixed with the oil at a specific volume fraction. By measuring the oil and the mixture, the permittivity of the inclusion, i.e. the solid, can be accurately derived from the Maxwell-Garnett effective medium theory. With this method, the strict requirements for the solid shape and surface flatness in the conventional measuring configurations can be waved off, and meanwhile the broadband permittivity can be obtained. This method also enables the permittivity measurement on a level of single particle, in an average sense, for materials in natural powder form. The demonstrations on alumina, glucose, and pearl show this approach is valid and robust.
Citation
Sucheng Li, Ruirui Chen, Shahzad Anwar, Weixin Lu, Yun Lai, Huanyang Chen, Bo Hou, Fengran Ren, and Bangming Gu, "Applying Effective Medium Theory in Characterizing Dielectric Constant of Solids," Progress In Electromagnetics Research Letters, Vol. 35, 145-153, 2012.
doi:10.2528/PIERL12072108
References

1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466

2. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies --- A review," IEEE Transactions on Instrumentation and Measurement, Vol. 29, 176-183, 1980.
doi:10.1109/TIM.1980.4314902

3. Adous, M., P. Queffelec, and L. Laguerre, "Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials," Meas. Sci. Technol., Vol. 17, 2241-2246, 2006.
doi:10.1088/0957-0233/17/8/026

4. Skierucha, W. and A. Wilczek, "A FDR sensor for measuring complex soil dielectric permittivity in the 10-500MHz frequency range," Sensors, Vol. 10, 3314-3329, 2010.
doi:10.3390/s100403314

5. Pozar, D. M., Microwave Engineering, Ch. 3, John Wiley & Sons, 1998.

6. Baker-Jarvis, J., "Transmission/reflection and short-circuit line methods," NIST Technical Note 1341, 1990.

7. Maxwell-Garnett, J. C., "Colours in metal glasses and in metallic films," Phil. Trans. R. Soc. London, Vol. 203, 385-420, 1904.
doi:10.1098/rsta.1904.0024

8. Cai, W. and V. M. Shalaev, "Optical Metamaterials: Fundamentals and Applications," Ch. 2, Springer, 2010.

9. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey, 2008.

10. Wen, W., X. Huang, S. Yang, K. Lu, and P. Sheng, "The giant electrorheological effect in suspensions of nanoparticles," Nature Materials, Vol. 2, 727-730, 2003.
doi:10.1038/nmat993

11. Philip, J., P. D. Shima, and B. Raj, "Nanofluid with tunable thermal properties," Appl. Phys. Lett., Vol. 92, 043108, 2006.
doi:10.1063/1.2838304

12. Shima, P. D. and J. Philip, "Tuning of thermal conductivity and rheology of nanofluids using an external stimulus," J. Phys. Chem. C, Vol. 115, 20097-20104, 2011.
doi:10.1021/jp204827q

13. Hu, X., C. T. Chan, J. Zi, M. Li, and K. M. Ho, "Diamagnetic response of metallic photonic crystals at infrared and visible frequencies," Phys. Rev. Lett., Vol. 96, 223901, 2006.
doi:10.1103/PhysRevLett.96.223901

14. Gao, Y., J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, "Optical negative refraction in ferrofluids with magnetocontrollablility," Phys. Rev. Lett., Vol. 104, 034501, 2010.
doi:10.1103/PhysRevLett.104.034501

15. Tao, H., et al. "Metamaterials on paper as a sensing platform Advanced Materials,", Vol. 23, 3197-3201, 2011.

16. Wada, S., H. Yasuno, T. Hoshina, S. M. Nam, H. Kakemoto, and T. Tsurumi, "Preparation of nm-sized barium titanate fine particles and their powder dielectric properties," Jpn. J. Appl. Phys., Vol. 42, 6188-6195, 2003.
doi:10.1143/JJAP.42.6188

17. Hung, D. S., P. C. Chiang, C. W. Lee, C. S. Ho, S. H. Chieng, and Y. D. Yao, "Observation of effective permittivity of water-dispersible FePt nanoparticles at microwave frequencies," IEEE Transactions on Magnetics, Vol. 43, 879-881, 2007.
doi:10.1109/TMAG.2006.888488