Vol. 44
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-17
SAR and Radiation Characteristics of a Dipole Antenna Above Differentfinite EBG Substratesin the Presence of a Realistichead Model in the 3.5 GHz Band
By
Progress In Electromagnetics Research B, Vol. 44, 53-70, 2012
Abstract
This study investigates the performance of a dipole antenna above electromagnetic bandgap (EBG) substrateswith different number of patchesto realize a low specific absorption rate (SAR) antenna for a 4G wireless communications system (3.5GHz band). A cubic head model is used fortheinitialanalysis toestimate the radiation characteristics and the SAR of the antenna. Computational results have shown that the antenna above anEBG substrate could provide a maximum reduction of 81% in the SAR and a radiation efficiency improvement of 10% when compared with theantenna above a perfect electric conductor (PEC) ground plane.However, the antenna above an EBG substrate with a lower number of patches results in a higher resonance frequency and cannot provide sufficient SAR reduction.In both the cubic and realistic head models,a similar tendency was observedin the SAR reduction capability ofthe antenna above the EBG substrates whencompared with the antenna above the PEC ground plane. For therealistic head model, the SARs of the dipole above EBGsubstrateswith 20 or 24 EBG patches can be reduced by 16% when compared to the casewith 12or16EBG patches.The variability of the SAR in the operating frequency band (|S1110 dB) of the antennais 5-35% for different EBG substrates.
Citation
Ryo Ikeuchi, Kwok Hung Chan, and Akimasa Hirata, "SAR and Radiation Characteristics of a Dipole Antenna Above Differentfinite EBG Substratesin the Presence of a Realistichead Model in the 3.5 GHz Band," Progress In Electromagnetics Research B, Vol. 44, 53-70, 2012.
doi:10.2528/PIERB12072005
References

1. ICNIRP "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998.

2. IEEE "C95.1 IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz," IEEE, New York, 2005.

3. Hirata, A., K. Shirai, and O. Fujiwara, "On averaging mass of SAR correlating with temperature elevation due to a dipole antenna," Progress In Electromagnetics Research, Vol. 84, 221-237, 2008.
doi:10.2528/PIER08072704

4. Chan, K. H., K. M. Chow, L. C Fung, and S. W. Leung, "Effects of using conductive materials for SAR reduction in mobile phone," Microwave & Opt. Tech. Lett., Vol. 44, No. 2, 140-144, 2005.
doi:10.1002/mop.20569

5. Chan, K. H., K. M. Chow, L. C Fung, and S. W. Leung, "SAR of internal antenna in mobile-phone applications," Microwave & Opt. Tech. Lett., Vol. 45, No. 4, 286-290, 2005.
doi:10.1002/mop.20797

6. Tay, R. Y. S., Q. Balzano, and N. Kuster, "Dipole configurations with strongly improved radiation e±ciency for hand-held transceivers," IEEE Trans. on Antennas & Propagat., Vol. 46, 798-806, 1998.
doi:10.1109/8.686765

7. Hirata, A., T. Adachi, and T. Shiozawa, "Folded-loop antenna with a re°ector for mobile handset at 2.0 GHz," Microwave & Opt. Tech. Lett., Vol. 40, No. 4, 272-275, 2004.
doi:10.1002/mop.11350

8. Wang, J. and O. Fujiwara, "Reduction of electromagnetic absorption in the human head for portable telephones by a ferrite sheet," IEICE Trans. on Commun., Vol. E80-B, No. 12, 1997.

9. Islam, M. T., M. R. I. Faruque, and N. Misran, "Design analysis of ferrite sheet attachment for SAR reduction in human head," Progress In Electromagnetics Research, Vol. 98, 191-205, 2009.
doi:10.2528/PIER09082902

10. Fung, L. C., S. W. Leung, and K. H. Chan, "Experimental study of SAR reduction on commercial products and shielding materials in mobile phone applications," Microwave & Opt. Tech. Lett., Vol. 36, 419-422, 2003.
doi:10.1002/mop.10780

11. Chou , H.-H., H.-T. Hsu, H.-T. Chou, K.-H. Liu, and F.-Y. Kuo, "Reduction of peak SAR in human head for handset applications with resistive sheets (r-cards)," Progress In Electromagnetics Research, Vol. 94, 281-296, 2009.
doi:10.2528/PIER09062702

12. Lee , S. and N. Kim, "SAR reduction technique by the high impedance surface using the artificial magnetic conductor," 34th Annual Conference of the Bioelectromagnetics Society, 49-50, 2012.

13. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. on Antennas & Propagat., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

14. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.
doi:10.1163/156939309789108606

15. Hwang, J.-N. and F.-C. Chen, "Reduction of the peak SAR in the human head with metamaterials," IEEE Trans. on Antennas & Propagat., Vol. 54, No. 12, 3763-3770, 2006.
doi:10.1109/TAP.2006.886501

16. Kwak, S. I., D. U. Sim, J. H. Kwon, and H. D. Choi, "Experimental tests of SAR reduction on mobile phone using EBG structures," Electron. Lett., Vol. 44, No. 9, 568-569, 2008.
doi:10.1049/el:20080028

17. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "Investigating the interaction between a human head and a smart handset for 4G mobile communication systems," Progress In Electromagnetics Research C, Vol. 2, 169-188, 2008.
doi:10.2528/PIERC08032405

18. Ikeuchi, R. and A. Hirata, "Dipole antenna above EBG substrate for local SAR reduction," IEEE Antennas and Wireless Propagation Letters,, Vol. 10, 904-906, 2011.
doi:10.1109/LAWP.2011.2167119

19. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterization of the EBG ground plane for low profile wire antenna application," IEEE Trans. on Antennas & Propagat., Vol. 51, No. 10, 2691-2702, 2003.
doi:10.1109/TAP.2003.817559

20. Barlevy, A. S. and Y. Rahmat-Samii, "Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting vias: Concept, analysis, and design," IEEE Trans. on Antennas & Propagat., Vol. 49, 242-353, 2001.

21. Azad, M. Z. and M. Ali, "Novel wideband directional dipole antenna on a mushroom like EBG structure," IEEE Trans. on Antennas & Propagat., Vol. 56, No. 5, 1242-1250, 2008.
doi:10.1109/TAP.2008.922673

22. IEEE "C95.3-2002 IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz-300 GHz," IEEE, New York, 2002.

23. Kiminami, K., A. Hirata, Y. Horii, and T. Shiozawa, "A study on human body modeling for the mobile terminal antenna design at 400MHz band," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 671-687, 2005.
doi:10.1163/1569393053305080

24. Hirata, A., S. Mitsuzono, and T. Shiozawa, "Feasibility study of adaptive nulling on handset for 4G mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 120-122, 2004.
doi:10.1109/LAWP.2004.829997

25. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 271-293, 1996.

26. Nagaoka, T., S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka, "Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry," Phys. Med. Biol., Vol. 49, 1-15, 2004.
doi:10.1088/0031-9155/49/1/001

27. FEKO User's Manual, Suite 4.2, EM Software & Systems (USA), Inc., Hampton, VA, Jun. 2004. [Online]. Available: http://www.feko.info.

28. Beard, B. B., W. Kainz, T. Onishi, T. Iyama, S. Watanabe, O. Fujiwara, J. Wang, G. Bit-Babik, A. Faraone, J. Wiart, A. Christ, N. Kuster, A.-K. Lee, H. Koeze, M. Siegbahn, J. Keshvari, H. Abrishamkar, W. Simon, D. Manteuffel, and N. Nikoloski, "Comparisons of computed mobile phone induced SAR in the SAM phantom to that in anatomically correct models of the human head," IEEE Trans. on Electromagnet. Compat., Vol. 48, No. 2, 397-407, 2006.
doi:10.1109/TEMC.2006.873870

29. Chan, K. H., "A study of electromagnetic radiation and specific absorption rate of mobile phones with fractional human head models,", Ph.D. Thesis, City University of Hong Kong, 2008.