Vol. 132
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-21
Design of RF Energy Harvesting System for Energizing Low Power Devices
By
Progress In Electromagnetics Research, Vol. 132, 49-69, 2012
Abstract
Electromagnetic energy harvesting holds a promising future for energizing low power electronic devices in wireless communication circuits. This article presents an RF energy harvesting system that can harvest energy from the ambient surroundings at the downlink radio frequency range of GSM-900 band. The harvesting system is aimed to provide an alternative source of energy for energizing low power devices. The system design consists of three modules: a single wideband 377 Ω E-shaped patch antenna, a pi matching network and a 7-stage voltage doubler circuit. These three modules were fabricated on a single printed circuit board. The antenna and Pi matching network have been optimized through electromagnetic simulation software, Agilent ADS 2009 environment. The uniqueness of the system lies in the partial ground plane and the alignment of induced electric field for maximum current flow in the antenna that maximizes the captured RF energy. The design and simulation of the voltage doubler circuit were performed using Multisim software. All the three modules were integrated and fabricated on a double sided FR 4 printed circuit board. The DC voltage obtained from the harvester system in the field test at an approximate distance of 50 m from GSM cell tower was 2.9 V. This voltage was enough to power the STLM20 temperature sensor.
Citation
Norashidah Md. Din, Chandan Kumar Chakrabarty, Aima Bin Ismail, Kavuri Kasi Annapurna Devi, and Wan-Yu Chen, "Design of RF Energy Harvesting System for Energizing Low Power Devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
doi:10.2528/PIER12072002
References

1. Roundy, S. J., "Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion," PhD Thesis, University of California, Berkeley, USA, 2003.

2. Roundy, S., B. Otis, Y. H. Chee, J. Rabaey, and P. Wright, "A 1.9 GHz RF transmit beacon using environmentally scavenged energy," ACM International Symposium on Low Power Electronics and Design , 2003.

3. Le, T., K. Mayaram, and T. S. Fiez, "Efficient far-field radio frequency power conversion system for passively powered sensor networks," IEEE Custom Integrated Circuits Conference (CICC), 293-296, Sep. 2006.

4. Sudou, M., H. Takao, K. Sawada, and M. Ishida, "A novel RF induced DC power supply system for integrated ubiquitous micro sensor devices," International Solid-State Sensors, Actuators and Microsystems Conference, 907-910, Jun. 2007.

5. Ungan, T. and L. M. Reindl, "Concept for harvesting low ambient RF-sources for microsystems," http://www.imtek.de/content/pdf/public/2007/powermems 2007paper ungan.pdf, Accessed on April 9, 2009.

6. Ungan, T. and L. M. Reindl, "Harvesting low ambient RF-sources for autonomous measurement systems," IEEE Instrumentation and Measurement Technology Conference proceedings, 62-65, May 2008.

7. Le, T. T., E±cient power conversion interface circuits for energy harvesting applications, PhD Thesis, Oregon State University, USA, Jun. 2008.

8. Visser, H. J., A. C. F. Reniers, and J. A. C. Theeuwes, "Ambient RF energy scavenging: GSM and WLAN power density measurements," Proceedings of the 38th European Microwave Conference, 721-724, Netherlands, Oct. 2008.

9. Asefi, M., S. H. Nasab, L. Albasha, and N. Qaddoumi, "Energizing low power circuits by using an RF signal harvester," 16th Telecommunications Forum TELFOR, Nov. 2008.

10. Hart, H., K. Lanham, and M. Sass, S-band radio frequency energy harvesting, Science Applications International Corporation, May 2009.

11. Jabbar, H., Y. S. Song, and T. T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices consumer electrons," IEEE Transcations on Consumer Electronics, Vol. 56, No. 1, 247-253, Feb. 2010.
doi:10.1109/TCE.2010.5439152

12. Arrawatia, M., M. S. Baghini, and G. Kumar, "RF energy harvesting system at 2.67 and 5.8 GHz," Proceedings of Asia-Pacific Microwave Conference, 900-903, 2010.

13. Arrawatia, M., M. S. Baghini, and G. Kumar, "RF energy harvesting system from cell towers in 900MHz band," National Conference on Communications, (NCC) 2011, 1-5, Jan. 28-30, 2011.

14. http://www.rfwirelesssensors.com/2009/01/intel-ambient-rf-energy-harvesting-demonstration/, Accessed on May 5, 2009.

15. http://www.powercastco.com/PDF/P2110-datasheet.pdf, Accessed on Jun. 14, 2010.

16. Chiam, T. M., L. C. Ong, M. F. Karim, and Y. X. Guo, "5.8 GHz circularly polarized rectennas using schottky diode and LTC5535 rectifier for RF energy harvesting," 2009 Asia-Pacific Microwave Conference (APMC 2009), 32-35, 2009.

17. Farinholt, K. M., G. Park, and C. R. Farra, "RF energy transmission for a low-power wireless impedance sensor node," IEEE Sensors Journal, Vol. 9, No. 7, 793-800, Jul. 2009.
doi:10.1109/JSEN.2009.2022536

18. Devi, K. K. A., S. Sadasivam, N. M. Din, C. K. Chakrabarthy, and S. K. Rajib, "Design of a wideband 377­ E-shaped patch antenna for RF energy harvesting ," Microwave and Optical Technology Letters, Vol. 54, No. 3, 569-573, Mar. 2012.
doi:10.1002/mop.26607

19. Balanis, C. A., Antenna Theory, 3rd Ed., John Wiley & Sons, New York, 2005.

20. Stutzman, W. and G. Thiele, Antenna Theory and Design, 2nd Ed., ISBN 0-471-02590-9, Wiley, 1997.

21. Devi, K. K. A., N. M. Din, and C. K. Chakrabarthy, "Optimization of the voltage doubler stages in an RF-DC convertor module for energy harvesting," Circuits and Systems, Vol. 3, No. 3, Jul. 2012.

22. Harris, D. W. Wireless battery charging system using radio frequency energy harvesting, Thesis, BS, University of Pittsburgh, Jul. 13-15, 2004.

23. Wong, K. L. and Y. F. Lin, "Small broadband rectangular microstrip antenna with chip-resistor loading," Electron. Lett., Vol. 39, 1593-1594, 1997.
doi:10.1049/el:19971111

24. STMicroelectronics, STLM20 application note, http://www.st.com/internet/com/Technical resources/technicalliterature/application note /CD00174666.pdf, Accessed on Nov. 12, 20.

25. STMicroelectronics "STLM20 ultra-low current precision analog temperature sensor," http://www.st.com/, Accessed on Nov. 12, 2010.