Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-22
Fast GPU-Based Interpolation for SAR Backprojection
By
Progress In Electromagnetics Research, Vol. 133, 259-283, 2013
Abstract
We introduce and discuss a parallel SAR backprojection algorithm using a Non-Uniform FFT (NUFFT) routine implemented on a GPU in CUDA language. The details of a convenient GPU implementation of the NUFFT-based SAR backprojection algorithm, amenable to further generalizations to a multi-GPU architecture, are also given. The performance of the approach is analyzed in terms of accuracy and computational speed by comparisons to a ``standard", parallel version of the backprojection algorithm exploiting FFT+interpolation instead of the NUFFT. Different interpolators have been considered for the latter processing scheme. The NUFFT-based backprojection has proven significantly more accurate than all the compared approach, with a computing time of the same order. An analysis of the computational burden of all the different steps involved in both the considered approaches (i.e., standard and NUFFT backprojections) has been also reported. Experimental results against the Air Force Research Laboratory (AFRL) airborne data delivered under the ``challenge problem for SAR-based Ground Moving Target Identification (GMTI) in urban environments" and collected over circular flight paths are also shown.
Citation
Amedeo Capozzoli, Claudio Curcio, and Angelo Liseno, "Fast GPU-Based Interpolation for SAR Backprojection," Progress In Electromagnetics Research, Vol. 133, 259-283, 2013.
doi:10.2528/PIER12071909
References

1. Bamler, R., "A comparison of range-doppler and wavenumber domain SAR focusing algorithms," IEEE Trans. on Geosci. Remote Sens., Vol. 30, No. 4, 706-713, Jul. 1992.
doi:10.1109/36.158864

2. Horham, L. A. and L. J. Moore, "SAR image formation toolbox for MATLAB," Proc. of SPIE 7699, 769906, 2010, doi:10.1117/12.855375.

3. Desai, M. D. and W. K. Jenkins, "Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar," IEEE Trans. on Image Proc., Vol. 1, No. 4, 505-517, Oct. 1992.
doi:10.1109/83.199920

4. Choi, H., D. C. Munson, and Jr., "Direct-Fourier reconstruction in tomography and synthetic aperture radar," Int. J. Imaging Syst. Tech., Vol. 9, No. 1, 1-13, 1998.
doi:10.1002/(SICI)1098-1098(1998)9:1<1::AID-IMA1>3.0.CO;2-E

5. Yegulalp, A. F., "Fast backprojection algorithm for synthetic aperture radar," Proc. of the IEEE Radar Conf., 60-65, Waltham, MA, Apr. 20-22, 1999.

6. Basu, S. and Y. Bresler, "O(N2log2N) filtered backprojection reconstruction algorithm for tomography," IEEE Trans. on Image Proc., Vol. 9, No. 10, 1760-1773, Oct. 2000.
doi:10.1109/83.869187

7. Ulander, L. M. H., H. Hellsten, and G. Stenström, "Synthetic aperture radar processing using fast factorized back-projection," IEEE Trans. on Aerosp. Electron. Syst., Vol. 39, No. 3, 760-776, Jul. 2003.
doi:10.1109/TAES.2003.1238734

8. Fessler, J. A. and B. P. Sutton, "Nonuniform Fast Fourier Transforms using min-max interpolation," IEEE Trans. on Signal Proc., Vol. 51, No. 2, 560-574, Feb. 2003.
doi:10.1109/TSP.2002.807005

9. Fourmont, K., "Non-equispaced fast Fourier transforms with applications to tomography," J. Fourier Anal. Appl., Vol. 9, No. 5, 431-450, Sept. 2003.
doi:10.1007/s00041-003-0021-1

10. Capozzoli, A., C. Curcio, A. Di Vico, and A. Liseno, "NUFFT-& GPU-based fast imaging of vegetation," IEICE Trans. on Commun., Vol. E94-B, No. 7, 2092-2103, Jul. 2011.
doi:10.1587/transcom.E94.B.2092

11. Capozzoli, A., C. Curcio, and A. Liseno, "GPU-based ω-k processing by 1D Non-Uniform FFTs," Progress In Electromagnetic Research M, Vol. 23, 279-298, 2012.
doi:10.2528/PIERM11083003

12. Franceschetti, G. and G. Schirinzi, "A SAR processor based on two-dimensional FFT codes," IEEE Trans. on Aerosp. Electron. Syst., Vol. 26, No. 2, 356-366, Mar. 1990.
doi:10.1109/7.53462

13. Cafforio, C., C. Prati, and F. Rocca, "SAR data focusing using seismic migration techniques," IEEE Trans. on Aerosp. Electron. Syst., Vol. 27, No. 2, 194-207, Mar. 1991.
doi:10.1109/7.78293

14. Franceschetti, G., R. Lanari, V. Pascazio, and G. Schirinzi, "WASAR: A wide-angle SAR processor," IEE Proceedings F Radar and Signal Processing, Vol. 139, No. 2, 107-114, Apr. 1992.
doi:10.1049/ip-f-2.1992.0014

15. Franceschetti, G., A. Mazzeo, N. Mazzocca, V. Pascazio, and G. Schirinzi, "An e±cient SAR parallel processor," IEEE Trans. on Aerosp. Electron. Syst., Vol. 27, No. 2, 343-353, Mar. 1991.
doi:10.1109/7.78308

16. Ender, J. H. G. and A. R. Brenner, "PAMIR --- A wideband phased array SAR/MTI system," IEE Proc. --- Radar Sonar Navig., Vol. 150, No. 3, 165-172, Jun. 2003.
doi:10.1049/ip-rsn:20030445

17. Hannsen, R. and R. Bamler, "Evaluation of interpolation kernels for SAR interferometry," IEEE Trans. on Geosci. Remote Sens., Vol. 37, No. 1, 318-321, Jan. 1999.
doi:10.1109/36.739168

18. Migliaccio, M. and F. Bruno, "A new interpolation kernel for SAR interferometric registration," IEEE Trans. on Geosci. Remote Sens., Vol. 41, No. 5, 1105-1110, May 2003.
doi:10.1109/TGRS.2003.810672

19. Migliaccio, M., F. Nunziata, F. Bruno, and F. Casu, "Knab sampling window for InSAR data interpolation," IEEE Trans. on Geosci. Remote Lett., Vol. 4, No. 3, 397-400, Jul. 2007.
doi:10.1109/LGRS.2007.895708

20. Capozzoli, A., G. D'Elia, A. Liseno, A. Moreira, and K. P. Papathanassiou, "A novel optimization approach to forest height reconstruction from multi-baseline data," Proc. of the Geosci. Remote Sens. Int. Symp., 5037-5040, Barcelona, Spain, Jul. 23-28, 2007.

21. Capozzoli, A., G. D'Elia, A. Liseno, P. Vinetti, M. Nannini, A. Reigber, R. Scheiber, and V. Severino, "SAR tomography with optimized constellation and its application to forested scenes," Atti della Fondazione G. Ronchi, Vol. LXV, No. 3, 367-375, May-Jun. 2010.

22. Bamler, R. and P. Hartl, "Synthetic aperture radar interferometry," Inverse Probl., Vol. 14, No. 4, R1-R54, Aug. 1998.
doi:10.1088/0266-5611/14/4/001

23. Tao, Y. B., H. Lin, and H. J. Bao, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetic Research, Vol. 81, 1-19, 2008.
doi:10.2528/PIER07121302

24. Dziekonski, A., A. Lamecki, and M. Mrozowski, "A memory efficient and fast sparse matrix vector product on a GPU," Progress In Electromagnetic Research, Vol. 116, 49-63, 2011.

25. Gao, P. C., Y. B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetic Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807

26. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetic Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

27. Dziekonski, A., P. Sypek, A. Lamecki, and M. Mrozowski, "Finite element matrix generation on a GPU," Progress In Electromagnetic Research, Vol. 128, 249-265, 2012.

28. Demir, V., "Graphics processor unit (GPU) acceleration of finite-difference frequency-domain (FDFD) method," Progress In Electromagnetic Research M, Vol. 23, 29-51, 2012.
doi:10.2528/PIERM11090909

29. Di Bisceglie, M., M. Di Santo, C. Galdi, R. Lanari, and N. Ranaldo, "Synthetic aperture radar processing with GPGPU," IEEE Signal Proc. Mag., Vol. 27, No. 2, 69-78, Sept. 2010.
doi:10.1109/MSP.2009.935383

30. Fasih, A. and T. Hartley, "GPU-accelerated synthetic aperture radar backprojection in CUDA," Proc. of the IEEE Radar Conf., 1408-1413, Washington, DC, May 10-14, 2010.

31. Kusk, A. and J. Dall, "SAR focusing of P-band ice sounding data using back-projection," Proc. of the IEEE Geosci. Remote Sens. Symp., 4071-4074, Honolulu, HI, Jul. 25-30, 2010.

32. Ponce, O., P. Prats, M. Rodriguez-Cassola, R. Scheiber, and A. Reigber, "Processing of circular SAR trajectories with fast factorized back-projection," Proc. of the IEEE Geosci. Remote Sens. Int. Symp., 3692-3695, Vancouver, Canada, Jul. 24-29, 2011.

33. Capozzoli, A., C. Curcio, A. Liseno, and P. Vinetti, "Fast interpolation accelerated on GPU for SAR backprojection," Proc. of the 28th Annual Rev. of Progr. in Appl. Comput. Electromagn., 305-310, Columbus, OH, Apr. 10-14, 2012.

34. Capozzoli, A., C. Curcio, A. Liseno, and P. V. Testa, "NUFFT-based SAR backprojection on multiple GPUs," Proc. of the Tyrrhenian Workshop on Advances in Radar and Remote Sensing, Napoli, Italy, Sept. 12-14, 2012.

35. Kirk, D. B. and W.-M. W. Hwu, Programming Massively Parallel Processors, Burlington, Morgan Kaufmann, MA, 2010.

36. Blom, M. and P. Follo, "VHF SAR image formation implemented on a GPU," Proc. of the IEEE Int. Symp. on Geosci. Remote Sens., 3352-3356, Seoul, South Korea, Jul. 25-29, 2005.

37. Jackson, J. I., C. H. Meyer, D. G. Nishimura, and A. Macovski, "Selection of a convolution function for Fourier inversion using gridding," IEEE Trans. on Med. Imag., Vol. 10, No. 3, 473-478, Sept. 1991.
doi:10.1109/42.97598

38. Scarborough, S. M., C. H. Casteel, Jr., L. R. Gorham, M. J. Minardi, U. K. Majumder, M. G. Judge, E. Zelnio, and M. Bryant, "A challenge problem for SAR-based GMTI in urban environments," Proc. of SPIE 7337, 73370G, 2009, doi:10.1117/12.823461.

39. Hein, A., Processing of SAR Data: Fundamentals, Signal Processing, Interferometry, Springer-Verlag, Berlin, Heidelberg, 2004.

40. D'Elia, G., G. Leone, R. Pierri, and G. Schirinzi, "Traveling sampling of scattered fields," Proc. of the IEEE Antennas Propag. Int. Symp., 531-534.

41. Knab, J. J., "Interpolation of band-limited functions using the approximate prolate series," IEEE Trans. on Inf. Theory, Vol. 25, No. 6, 717-719, Nov. 1979.
doi:10.1109/TIT.1979.1056115

42. Knab, J. J., "The sampling window," IEEE Trans. on Inf. Theory, Vol. IT-29, No. 1, 157-159, Jan. 1983.
doi:10.1109/TIT.1983.1056603

43. Li, A., "Algorithms for the implementation of Stolt interpolation is SAR processing ," Proc. of the IEEE Geosci. Remote Sens. Symp., 360-362, Houston, TX, May 26-29, 1992.

44. Keys, R. G., "Cubic convolution interpolation for digital image processing," IEEE Trans. on Acoust. Speech Signal Proc., Vol. 29, No. 6, 1153-1160, Dec. 1981.
doi:10.1109/TASSP.1981.1163711

45. Sanders, J. and E. Kandrot, CUDA by Example, Addison-Wesley, Ann Arbor, MI, 2011.

46. CUDA CUFFT Library, Feb. 2011.

47. Nukada, A. and S. Matsuoka, "Auto-tuning 3-D FFT library for CUDA GPUs," Proc. of Conf. on High Performance Computing Networking, Storage and Anal., Portland, OR, Nov. 14-20, 2009.

48. Ruijters, D., B. M. ter Haar Romeny, and P. Suetens, "Efficient GPU-based texture interpolation using uniform B-splines," J. Graphics, GPU, Game Tools, Vol. 13, No. 4, 61-69, Jan. 2008.
doi:10.1080/2151237X.2008.10129269

49. http://www.cs.virginia.edu/» mwb7w/cuda support/memory m-anagement overhead.html.

50. http://www.cs.virginia.edu/»mwb7w/cuda support/memory transfer overhead.html .

51. Tarjan, D., K. Skadron, and P. Micikevicius, "The art of performance tuning for CUDA and manycore architectures," Birds-of-a-feather session at SC'09, 2009.

52. Capozzoli, A., C. Curcio, G. D'Elia, A. Liseno, and P. Vinetti, "Fast CPU/GPU pattern evaluation of irregular arrays," Appl. Comput. Electromagn. Soc. J., Vol. 25, No. 4, 355-372, Apr. 2010.

53. CUDA Toolkit 4.0, CUBLAS Library, Apr. 2011, Oct. 2004.

54. Rigling, B. D. and R. L. Moses, "Polar format algorithm for bistatic SAR," IEEE Trans. on Aerosp. Electron. Syst., Vol. 40, No. 4, 1147-1159.
doi:10.1109/TAES.2004.1386870

55. Selva, J. and J. M. Lopez-Sanchez, "Efficient interpolation of SAR images for coregistration in SAR interferometry," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 3, 411-415, Jul. 2007.
doi:10.1109/LGRS.2007.895961

56. Austin, C. D., E. Ertin, and R. L. Moses, "Sparse multipass 3D SAR imaging: Applications to the GOTCHA data set," Proc. of SPIE Algorithms for Synthetic Aperture Radar Imagery XVI, Vol. 7337, Orlando, FL, Apr. 16-17, 2009.