Vol. 131
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-14
Design and Implementation of an Ultra-Wideband Six-Port Network
By
Progress In Electromagnetics Research, Vol. 131, 293-310, 2012
Abstract
This paper presents a six-port network over an ultra-wideband (UWB) of 2-8 GHz. Its key component is the six-port junction, which consists of a Wilkinson power divider and three 3-dB quadrature couplers, This six-port junction is accomplished in a low dielectric constant substrate (Rogers RT/duroid 5880). Multi-section impedance transformation is applied in the power divider, and the quadrature coupler is realized by using two 8.34 dB couplers in tandem. An ultra-wideband operation of the six-port junction is verified by full electromagnetic simulations and measurements. The results show that the designed devices exhibit good performance across 2-8 GHz band: the return losses at input ports are higher than 15 dB, the insertion losses from input ports to the remaining ports are 7.2 dB ± 1.7 dB, the isolation between two input ports is greater than 20.5 dB, and the maximum phase difference compared with the theoretical behavior between two test ports is 10°. For the manufactured six-port junction, a six-port phase measurement system and a calibration technique based on support vector regression (SVR) are introduced. Results show that the SVR model can achieve a mean phase error of 1.5274°.
Citation
Hao Peng, Ziqiang Yang, and Tao Yang, "Design and Implementation of an Ultra-Wideband Six-Port Network," Progress In Electromagnetics Research, Vol. 131, 293-310, 2012.
doi:10.2528/PIER12070601
References

1. Hoer, , C. A., , "The six-port coupler: A new approach to measuring voltage, current, power, impedance and phase," IEEE Trans. Instrum. Meas., Vol. 21, No. 4, 466-470, Nov. 1972.
doi:10.1109/TIM.1972.4314068

2. Cicolani, , M., F. Marchetti, and , "Phase and amplitude automatic measurements on pulsed RF signals," Twenty-second European Microwave Conference, Helsinki, Finland,, Sep. 1992.

3. Galwas, , B., S. Palczewski, and , "Idea of six-port vector-voltmeter with homodyne phase-sensitive detectors," Ninth Instrumentation and Measurement Technology Conference,, 1992.

4. Galwas, B., S. Palczewski, and , "Broadband homodyne six-port reflectometer," Proc. 21st European Microwave Conferenc , 1991.

5. Engen, , G. F., , "The six-port reflectometer: An alternative network analyzer," IEEE Trans. Microw. Theory Tech.,, Vol. 25, No. 12, 1075-1080, Dec. 1977.
doi:10.1109/TMTT.1977.1129277

6. Peng, , H., T. Yang, and Z. Yang, , "Calibration of a six-port position sensor via support vector regression," Progress In Electromagnetics Research C, Vol. 26, 71-81, 2012.
doi:10.2528/PIERC11101707

7. Peng, , H., Z. Yang, and T. Yang, "Design and implementation of a practical direction finding receiver," Progress In Electromagnetics Research Letters, Vol. 32, 157-167, 2012.

8. Yang, , J.-R., S. Hong, and , "A Distance-compensated radar sensor with a six-port network for remote distinction of objects with di®erent dielectric constants," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1429-1437, 2010.
doi:10.1163/156939310792149632

9. Coupez, , J. P., H. Gruchala, A. Slowik, C. Recko, and A. Rutkowski, "High resolution IFMs," 14th International Conference on Microwaves, Radar and Wireless Communications,, 2002.

10. Khaddaj Mallat, , N., E. Moldovan, and S. O. Tatu, "Comparative demodulation results for six-port and conventional 60 GHz direct conversion receivers," Progress In Electromagnetics Research, Vol. 84, 437-449, 2008.
doi:10.2528/PIER08081003

11. Boukari, , B., E. Moldovan, S. Affes, K. Wu, R. G. Bosisio, and S. O. Tatu, "A heterodyne six-port FMCW radar sensor architecture based on beat signal phase slope techniques," Progress In Electromagnetics Research, Vol. 93, 307-322, 2009.
doi:10.2528/PIER09052610

12. De la Morena-Alvarez-Palencia, , C., M. Burgos-Garcia, and , "Four-octave six-port receiver and its calibration for broadband communications and software defined radios," Progress In Electromagnetics Research, Vol. 116, 1-21, 2011.

13. Moscoso-Martir, , A., I. Molina-Fernandez, and A. Ortega-Monux, "Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation," Progress In Electromagnetics Research, Vol. 121, 225-247, 2011.
doi:10.2528/PIER11070801

14. Hammou, , D., E. Moldovan, and S. O. Tatu, , "Modeling and analysis of a modifid V-band MHMIC six-port circuit," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1419-1427, 2010.
doi:10.1163/156939310791958644

15. Moldovan, , E., S. O. Tatu, T. Gaman, K. Wu, and R. G. Bosisio, "A new 94 GHz six port collision avoidance radar sensor," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 751-759, Mar. 2004.
doi:10.1109/TMTT.2004.823533

16. Xiao, , F. C., F. M. Ghannouchi, and T. Yakabe, "Application of a six-port wave-correlator for a very low velocity measurement using the Doppler effect ," IEEE Trans. Instrum Meas., Vol. 52, No. 2, 297-301, Apr. 2003.
doi:10.1109/TIM.2003.810039

17. Tatu, , S. O., E. Moldovan, G. Brehm, K. Wu, and R. G. Bosisio, "Ka-band direct digital receiver," IEEE Trans. Microw. Theory Tech.,, Vol. 50, No. 11, 2436-2442, , Nov. 2002.
doi:10.1109/TMTT.2002.804646

18. Vapnik, , V., , "The Nature of Statistical Learning Theory, ," Springer-Verlag, , 1995.

19. Xia, , L., R. Xu, and B. Yan, , "LTCC interconnect modeling by support vector regression," Progress In Electromagnetics Research, Vol. 69, No. 67--75, 67-75, 2007.
doi:10.2528/PIER06120503

20. Yang, , Z. Q., T. Yang, Y. Liu, and S. H. Han, "MIM capacitor modeling by support vector regression," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 61-67, 2008.
doi:10.1163/156939308783122788

21. Tatu, , S. O., E. Moldovan, K. Wu, R. G. Bosisio, and T. A. Denidni, "Ka-band analog front-end for software-defined direct conversion receiver," IEEE Trans. Microw. Theory Tech., , Vol. 53, 2768-2776, , Sep. 2005..
doi:10.1109/TMTT.2005.854181

22. Lin, Z., Q.-X. Chu, and , "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines," Progress In Electromagnetics Research,, Vol. 103, 271-284, 2010..
doi:10.2528/PIER10012202

23. Chiang, , C. T., B.-K. Chung, and , "Ultra wideband power divider using tapered line," Progress In Electromagnetics Research , Vol. 106, 61-73, , 2010.
doi:10.2528/PIER10061603

24. Wang, , D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
doi:10.2528/PIER11052303

25. Zhang, , H., X.-W. Shi, F. Wei, and L. Xu, , "Compact wideband Gysel power divider with arbitrary power division based on patch type structure," Progress In Electromagnetics Research, Vol. 119, 395-406, , 2011.
doi:10.2528/PIER11071501

26. Matthaei, , G. L., L. Young, and E. M. T. , Jones, Microwave Filters Impedance-matching Networks, and Coupling Structures, , Artech House Books, , 1980.

27. Wong, , Y. S., S. Y. Zheng, and W. S. Chan, "Multifolded bandwidth branch line coupler with filtering characteristic using coupled port feeding," Progress In Electromagnetics Research, Vol. 118, 17-35, 2011.
doi:10.2528/PIER11041401

28. Sharma, , R. Y., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, 261-273, , 2006..
doi:10.2528/PIER06100502

29. Shie, C.-I., J.-C. Cheng, S.-C. Chou, and Y.-C. Chiang, "Design of cmos quadrature vco using on-chip trans-directional couplers," Progress In Electromagnetics Research,, Vol. 106, 91-106, , 2010.
doi:10.2528/PIER10053002

30. Liu, , G.-Q., L.-S. Wu, and W.-Y. Yin, "A compact microstrip ratrace coupler with modified lange and T-shaped arms," Progress In Electromagnetics Research, Vol. 115, 509-523, 2011.

31. Wong, , Y. S., S. Y. Zheng, and W. S. Chan, "Multifolded bandwidth branch line coupler with filtering characteristic using coupled port feeding," Progress In Electromagnetics Research, Vol. 118, 17-35, , 2011.
doi:10.2528/PIER11041401

32. Lange, , J., "Interdigitated stripline quadrature hybrid," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 12, 1150-1151, Dec. 1969..
doi:10.1109/TMTT.1969.1127115

33. Cho, , J.-H., H.-Y. Hwang, and S.-W. Yun, "A design of wideband 3-dB coupler with N-section microstrip tandem structure," IEEE Microw. Wireless Compon. Lett.,, Vol. 15, No. 2, 113-115, Feb. 2005.
doi:10.1109/LMWC.2004.842850

34. Shelton, J. P., J. A. Mosko, and , "Synthesis and design of wide-band equal-ripple TEM directional couplers and fixed phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 14, No. 10, 462-473, Oct. 1966.
doi:10.1109/TMTT.1966.1126305

35. Carpenter, , E., "The virtues of mixing tandem and casca coupler connections," 1971 IEEE GMTT International Microwave Symposium Digest, , 8-9, 1971.
doi:10.1109/GMTT.1971.1122878

36. Walker, J. L. B., , "Analysis and design of Kemp-type 3-dB quadrature couplers," IEEE Trans. Microw. Theory Tech.,, Vol. 38, No. 1, 88-90, , Jan. 1990..
doi:10.1109/22.44161

37. Chang, , C. C., C. J. Lin, and , "LIBSVM: A library for support vector machines," System Documentation, , 2004.