Vol. 34
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-09-11
Localized Dual-Side Mushroom Ground Plane Structure for the SSN Suppression in Multilayer Pcbs
By
Progress In Electromagnetics Research Letters, Vol. 34, 169-176, 2012
Abstract
A novel dual-side mushroom ground plane (DMGP) structure is proposed for the noise suppression in high-speed multilayer printed circuit boards (PCBs). The proposed method is localized suppression technique where a dual-side mushroom structure is placed below the noise-sensitive device. In multilayer PCBs with DMGP, noise between two ports with large or small ports spacing can be minimized effectively, which is flexible for the layout of mixed-signal system. Wideband noise suppression is achieved for the fabricated boards even though the port spacing is only 3.5 mm.
Citation
Jianjie Li, Jun-Fa Mao, Siwei Ren, and Hao-Ran Zhu, "Localized Dual-Side Mushroom Ground Plane Structure for the SSN Suppression in Multilayer Pcbs," Progress In Electromagnetics Research Letters, Vol. 34, 169-176, 2012.
doi:10.2528/PIERL12070506
References

1. Knigbten, J. L., B. Archambeault, J. Fan, G. Selli, S. Connor, and J. L. Drewniak, "PDN design strategies: I. Ceramic SMT decoupling capacitors --- what values should I choose?," IEEE EMC Society Newsletter, Vol. 207, 46-53, 2005.

2. Kim, Y. J., U. Choi, J. C. Woo, and Y. S. Kim, "Selection of decoupling capacitors to reduce the switching noise," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1079-1087, 2007.

3. Chang, C.-S., J.-Y. Li, S.-X. Lin, W.-J. Lin, M.-P. Houng, L.-S. Chen, and D.-B. Lin, "Simultaneous switching noise suppression using nickel-ferrite thin films," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1685-1694, 2009.
doi:10.1163/156939309789566897

4. Huang, H.-F., S.-Y. Liu, and W. Guo, "A hierarchical tree shaped power distribution network based on constructal theory for EBG structure power plane," Progress In Electromagnetics Research B, Vol. 36, 173-191, 2012.
doi:10.2528/PIERB11081002

5. Eom, D.-S., J. Byun, and H.-Y. Lee, "New structure of composite power plane using spiral EBG and external magnetic material for SSN suppression," Progress In Electromagnetics Research Letters, Vol. 15, 69-77, 2010.
doi:10.2528/PIERL10012104

6. He, H.-S., X.-Q. Lai, Q. Ye, and Q. Wang, "Wideband SSN suppression in high-speed PCB using novel planar EBG," Progress In Electromagnetics Research Letters, Vol. 18, 29-39, 2010.
doi:10.2528/PIERL10080102

7. Abhari, R. and G. V. Eleftheriades, "Suppression of the parallel-plate noise in high-speed circuits using metallic electromagnetic band-gap structures," IEEE International Microwave Symposium Digest, 493-496, Seattle, WA, Jun. 2-7, 2002.

8. Kamgaing, T. and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 1, 21-23, Jan. 2003.
doi:10.1109/LMWC.2002.807713

9. Lin, D.-B., K.-C. Hung, C.-T. Wu, and C. S. Chang, "A serpent bridge electromagnetic bandgap structure for suppressing simultaneous switching noise," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 213-220, 2009.
doi:10.1163/156939309787604535

10. He, Y., L. Li, C.-H. Liang, and Q. H. Liu, "EBG structures with fractal topologies for ultra-wideband ground bounce noise suppression," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1365-1374, 2010.
doi:10.1163/156939310791958734

11. Kim, Y. J., K. B. Yang, and Y. S. Kim, "Wideband simultaneous switching noise suppression in mobile phones using miniaturized electromagnetic bandgap structures," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1929-1938, 2009.
doi:10.1163/156939309789932331

12. Wu, T. L., C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang, "A novel power plane with super wideband elimination of ground bounce noise on high speed circuits," IEEE Microw. Wireless Compon. Lett.,, Vol. 15, No. 3, 174-176, Mar. 2005.
doi:10.1109/LMWC.2005.844216

13. Kim, K. H. and J. E. Shutt-Aine, "Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 178-186, Jan. 2008.
doi:10.1109/TMTT.2007.912199

14. Wang, C.-L., G.-H. Shiue, W.-D. Guo, and R.-B. Wu, "A systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 178-186, Jan. 2008.
doi:10.1109/TMTT.2007.912199

15. Bait-Suwailam, M. M. and O. M. Ramahi, "Simultaneous switching noise mitigation in high-speed circuits using complementary split-ring resonators," Electronics Letters, Vol. 46, No. 8, 563-564, Apr. 2010.
doi:10.1049/el.2010.0583

16. Kang, H.-D., H. Kim, S.-G. Kim, and J.-G. Yook, "A localized enhanced power plane topology for wideband suppression of simultaneous switching noise," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 373-380, May 2010.
doi:10.1109/TEMC.2010.2044415

17. Li, J. J., J. F. Mao, and M. Tang, "Mushroom-type ground plane structure for wideband SSN suppression in high-speed circuits," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 12, 646-648, Dec. 2011.
doi:10.1109/LMWC.2011.2170829