Vol. 33
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-08-01
Dual-Band Frequency Selective Surface with Miniaturized Element in Low Frequencies
By
Progress In Electromagnetics Research Letters, Vol. 33, 167-175, 2012
Abstract
In this paper, we propose a dual-band frequency selective surface (FSS) in low frequencies with miniaturized element. A dual-concentric square element with two different slot sizes is constructed to realize dual-band passband responses. Each passband is realized by a square slot structure. Besides, we reduce the slot sizes to make the element miniature and compact. Based on this technique, a dual-band FSS with miniaturized element in low frequencies is designed. Both the simulation and experiment results show that such a FSS owes its advantages to miniature element, stable performance with various incident angles and different polarizations, which is suitable for dual-band shipboard communication.
Citation
Yuan Yang, Xu-Hua Wang, and Hang Zhou, "Dual-Band Frequency Selective Surface with Miniaturized Element in Low Frequencies," Progress In Electromagnetics Research Letters, Vol. 33, 167-175, 2012.
doi:10.2528/PIERL12070319
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.

2. Winkler, S. A., W. Hong, M. Bozzi, and K. Wu, "Polarization rotating frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1202-1213, 2010.
doi:10.1109/TAP.2010.2041170

3. Chakravarty, S., R. Mittra, and N. Rhodes, "Williams application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics," IEEE Trans. Antennas Propag., Vol. 50, No. 3, 284-296, 2002.
doi:10.1109/8.999618

4. Kiani, G. I., K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface absorber," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2931-2934, 2007.
doi:10.1109/TAP.2007.905980

5. Rashid, A. K. and Z. Shen, "A novel band-reject frequency selective surface with pseudo-elliptic response," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1220-1226, 2010.
doi:10.1109/TAP.2010.2041167

6. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surface for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

7. Luebbers, R. J. and B. A. Munk, "Some effects of dielectric loading on periodic slot arrays," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 536-542, Jul. 1978.
doi:10.1109/TAP.1978.1141887

8. Wakabayashi, H., M. Kominami, H. Kusaka, and H. Nakashima, "Numerical simulations for frequency-selective screens with complementary elements ," IEE Pro.-Micro. Antennas Propag., Vol. 141, No. 6, 477-482, 1994.
doi:10.1049/ip-map:19941322

9. Lockyers, D. S., J. C. Vardaxpglou, and R. A. Simpkin, "Complementary frequency selective surfaces," IEE Pro.-Micro. Antennas Propag., Vol. 147, No. 6, 501-507, 2000.
doi:10.1049/ip-map:20000799

10. Baena, J. D., L. Jelinek, R. Marqu¶es, J. J. Mock, J. Gollub, and D. R. Smith, "Isotropic frequency selective surfaces made of cubic resonators ," Appl. Phys. Lett., Vol. 91, 191105, 2007.
doi:10.1063/1.2806915

11. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567

12. Bayatpur, F. and K. Sarabandi, "Single-layer, high-order, miniaturized element frequency selective surfaces," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 4, 774-781, 2008.
doi:10.1109/TMTT.2008.919654

13. Parker, E. A., J.-B. Robertson, B. Sanz-lzquierdo, and J. C. Batchlor, "Minimal size FSS for long wavelength operation," Electron. Lett., Vol. 44, No. 6, 2008.
doi:10.1049/el:20080282

14. Liu, H., K. L. Fprd, and R. J. Langley, "Miniaturized bandpass frequency selective surface with lumped components," Electron. Lett., Vol. 44, No. 18, 1054-1055, 2008.
doi:10.1049/el:20081763

15. Moallem, M. and K. Sarabandi, "Miniaturized-element frequency selective surfaces for millimeter-wave to terahertz applications," IEEE Trans. Terahertz Science Tech., Vol. 2, No. 3, 333-339, 2012.
doi:10.1109/TTHZ.2012.2189910

16. Pous, R. and D. M. Pozar, "A frequency-selective surface using coupled microstrip patches," IEEE Trans. Antennas Propag., Vol. 39, No. 12, 1763-1769, 1991.
doi:10.1109/8.121598

17. Abbaspour-Tamijani, A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-antenna arrays as a class of bandpass frequency-selective surfaces," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, 1781-1789, 2004.
doi:10.1109/TMTT.2004.831572

18. Behdad, N., M. Al-Joumayly, and M. Salehi, "A low-profile third-order bandpass frequency selective surface," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 460-466, 2009.
doi:10.1109/TAP.2008.2011202

19. Parker, E. A. and A. N. A. EI Sheikh, "Convoluted array elements and reduced size unit cells for frequency selective," IEE Pro.-Micro. Antennas Propag., Vol. 138, 19-22, 1991.
doi:10.1049/ip-h-2.1991.0004

20. Sanz-Izquierdo, B., E. A. Parker, J.-B. Roberson, and J. C. Batchelor, "Singly and dual polarized convoluted frequency selective structures," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 690-696, 2010.
doi:10.1109/TAP.2009.2039321

21. Luo, G. Q., W. Hong, Z. C. Hao, B. Liu, W. D. Li, et al. "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4035-4043, Dec. 2005.
doi:10.1109/TAP.2005.860010

22. Luo, G. Q., W. Hong, Q. H. Lai, K. Wu, and L. L. Sun, "Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2481-2487, 2007.
doi:10.1109/TMTT.2007.910085

23. Wu, T. K., "Four-band frequency selective surface with double square loop patch elements ," IEEE Trans. Antennas Propag., Vol. 42, No. 12, 1659-1663, 1994.
doi:10.1109/8.362804

24. Huang, J., T. K.Wu, and S. W. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210

25. Romeu, J. and Y. Rahamat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propag., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

26. Salehi, M. and N. Behdad, "A second-order dual X-/Ka-band frequency selective surface," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 785-787, 2008.
doi:10.1109/LMWC.2008.2007698

27. Zhou, H., S.-B. Qu, et al. "A triband second-order frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 10, 507-509, 2011.
doi:10.1109/LAWP.2011.2157074

28. Luo, G. Q., W. Hong, H. J. Tang, J. X. Chen, and K. Wu, "Dualband frequency-selective surfaces using substrate-integrated waveguide technology," IET Microw. Antennas Propag., Vol. 1, No. 2, 408-413, 2007.
doi:10.1049/iet-map:20060039

29. Xu, R. R., Z.-Y. Zong, H.-C. Zhao, Z.-Y. Zong, and W. Wu, "Dual-band capacitive loaded frequency selective surfaces with close band spacing," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 782-784, 2008.
doi:10.1109/LMWC.2008.2007697

30. Xu, R.-R., Z.-Y. Zong, and W. Wu, "Low-frequency miniaturized dual-band frequency selective surfaces with close band spacing," Microw. Opt. Techn. Lett., Vol. 51, No. 5, 1238-1240, 2009.
doi:10.1002/mop.24338