Vol. 130
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-15
Atmospheric Propagation at 100 and 300 GHz : Assessment of a Method to Identify Rainy Conditions During Radiosoundings
By
Progress In Electromagnetics Research, Vol. 130, 257-279, 2012
Abstract
The influence of atmospheric gases and tropospheric phenomena becomes more relevant at frequencies within the THz band (100 GHz to 10 THz), severely affecting the propagation conditions. The use of radiosoundings in propagation studies is a well established measurement technique in order to collect information about the vertical structure of the atmosphere, from which gaseous and cloud attenuation can be estimated with the use of propagation models. However, some of these prediction models are not suitable to be used under rainy conditions. In the present study, a method to identify the presence of rainy conditions during radiosoundings is introduced, with the aim of filtering out these events from yearly statistics of predicted atmospheric attenuation. The detection procedure is based on the analysis of a set of parameters, some of them extracted from synoptical observations of weather (SYNOP reports) and other derived from radiosonde observations (RAOBs). The performance of the method has been evaluated under different climatic conditions, corresponding to three locations in Spain, where colocated rain gauge data were available. Rain events detected by the method have been compared with those precipitations identified by the rain gauge. The pertinence of the method is discussed on the basis of an analysis of cumulative distributions of total attenuation at 100 and 300 GHz. This study demonstrates that the proposed method can be useful to identify events probably associated to rainy conditions. Hence, it can be considered as a suitable algorithm in order to filter out this kind of events from annual attenuation statistics.
Citation
Gustavo Adolfo Siles Soria, Jose M. Riera, Pedro Garcia del Pino, and Jordi Romeu, "Atmospheric Propagation at 100 and 300 GHz : Assessment of a Method to Identify Rainy Conditions During Radiosoundings," Progress In Electromagnetics Research, Vol. 130, 257-279, 2012.
doi:10.2528/PIER12062603
References

1. Siegel, P. H., "Terahertz technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 910-928, 2002.
doi:10.1109/22.989974

2. Tonouchi, M., "Cutting-edge terahertz technology," Nature Photonics, Vol. 1, No. 2, 97-105, 2007.
doi:10.1038/nphoton.2007.3

3. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304

4. Xu, O., "Diagonal horn gaussian e±ciency enhancement by dielectric loading for submillimeter wave application at 150 GHz," Progress In Electromagnetics Research, Vol. 114, 177-194, 2011.

5. Dou, W.-B., H. F. Meng, B. Nie, Z.-X. Wang, and F. Yang, "Scanning antenna at THz band based on quasi-optical techniques," Progress In Electromagnetics Research, Vol. 108, 343-359, 2010.
doi:10.2528/PIER10062810

6. Kulesa, C., "Terahertz spectroscopy for astronomy: From comets to cosmology," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 232-240, 2011.
doi:10.1109/TTHZ.2011.2159648

7. Yeom, S., D. Lee, H. Lee, J. Son, and V. P. Gushin, "Distance estimation of concealed objects with stereoscopic passive millimeter-wave imaging," Progress In Electromagnetics Research, Vol. 115, 399-407, 2011.

8. Kemp, M., "Explosives detection by terahertz spectroscopy --- A bridge too far? ," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 282-292, 2011.
doi:10.1109/TTHZ.2011.2159647

9. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2438-2447, 2004.
doi:10.1109/TMTT.2004.835916

10. Ajito, K. and Y. Ueno, "THz chemical imaging for biological applications," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 293-300, 2011.
doi:10.1109/TTHZ.2011.2159562

11. Cimini, D., R.Westwater, A. J. Gasiewski, M. Klein, V. Y. Leuski, and J. C. Liljegren, "Ground-based millimeter-and submillimeter-wave observations of low vapor and liquid water contents," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 7, 2169-2180, 2007.
doi:10.1109/TGRS.2007.897450

12. Luini, L., C. Riva, C. Capsoni, and A. Martellucci, "Attenuation in nonrainy conditions at millimeter wavelengths: Assessment of a procedure ," IEEE Transactions on Geoscience and Remote , Vol. 45, No. 7, 2150-2157, 2007.
doi:10.1109/TGRS.2007.895336

13. Das, S., A. Maitra, and A. K. Shukla, "Rain attenuation modeling in the 10-100 GHz frequency using drop size distributions for different climatic zones in tropical India," Progress In Electromagnetics Research B, Vol. 25, 211-224, 2010.
doi:10.2528/PIERB10072707

14. Owolawi, P. A., "Rainfall rate probability density evaluation and mapping for the estimation of rain attenuation in south africa and surrounding islands," Progress In Electromagnetics Research, Vol. 112, 155-181, 2011.

15. Terasense, TeraSense: Project summary, 2012, http://www.ter-asense.org.

16. Liebe, H., G. Hufford, and M. Cotton, "Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz ," AGARD, 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel, Vol. 1, 1993.

17. Rosenkranz, P., "Water vapor microwave continuum absorption: A comparison of measurements and models," Radio Science, Vol. 33, No. 4, 919-928, 1998.
doi:10.1029/98RS01182

18. Siles, G., J. Riera, and P. García-del-Pino, "Considerations on cloud attenuation at 100 and 300 GHz for propagation measurements within the TeraSense project," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2011.

19. Salonen, E. and S. Uppala, "New prediction method of cloud attenuation," Electronics Letters, Vol. 27, No. 12, 1106-1108, 1991.
doi:10.1049/el:19910687

20. Decker, M., E. Westwater, and F. Guiraud, "Experimental evaluation of ground-based microwave radiometric sensing of atmospheric temperature and water vapor profiles," Journal of Applied Meteorology, Vol. 17, No. 12, 1788-1795, 1978.
doi:10.1175/1520-0450(1978)017<1788:EEOGBM>2.0.CO;2

21. Mattioli, V., P. Basili, S. Bonafoni, P. Ciotti, and E. Westwater, "Analysis and improvements of cloud models for propagation studies," Radio Science, Vol. 44, No. 2, 2009.
doi:10.1029/2008RS003876

22. University of Wyoming, ``Upper air data: Soundings," 2012, http://weather.uwyo.edu/upperair/sounding.html.

23. Durre, I., R. Vose, and D. Wuertz, "Overview of the integrated global radiosonde archive," Journal of Climate, Vol. 19, No. 1, 53-68, 2006.
doi:10.1175/JCLI3594.1

24. Bosisio, A., E. Fionda, P. Basili, G. Carlesimo, and A. Martellucci, "Identification of rainy periods from ground based microwave radiometry ," European Journal of Remote Sensing, Vol. 45, 41-50, 2012.
doi:10.5721/EuJRS20124505

25. World Meteorological Organization, Manual on Codes --- International Codes, Part A, 2010.

26. Turner, D., A. Vogelmann, R. Austin, J. Barnard, K. Cady-Pereira, J. Chiu, S. Clough, C. Flynn, M. Khaiyer, J. Liljegren, et al. "Thin liquid water clouds," Bulletin of the American Meteorological Society, Vol. 88, No. 2, 177-190, 2007.
doi:10.1175/BAMS-88-2-177

27. Al-Ansari, K., P. García-del-Pino, J. Riera, and A. Benarroch, "One-year cloud attenuation results at 50 GHz," Electronics Letters, Vol. 39, No. 1, 136-137, 2003.
doi:10.1049/el:20030059

28. Siles, G., J. Riera, and P. García-del-Pino, "Estimation of total attenuation at 100 and 300 GHz using meteorological data in madrid," Proceedings of the ESA/ESTEC Workshop on Radiowave Propagation, 2011.

29. Radiosonde EU, , Stations de radiosondage en Espagne, (Radiosounding stations in Spain), 2012, http://www.radiosonde.eu/RS02/RS02K.html.

30. García-del-Pino, P., R. Rial, M. Cruz Moro, and A. Benarroch, "Experimental 0º isotherm height in Spain: Comparison with predictions and application for rain attenuation," Open Symposium n Propagation and Remote Sensing, URSI Comission-F, 2002.

31. ITU-R, , ITU-R recommendation P.676-8. attenuation by atmo-spheric gases, 2009.

32. ITU-R, , ITU-R recommendation P.840-5. attenuation due to clouds and fog, 2012.

33. Siles, G., J. Riera, and P. García-del-Pino, "On the use of radiometric measurements to estimate atmospheric attenuation at 100 and 300 GHz," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 32, 528-540, 2011.
doi:10.1007/s10762-011-9770-0