Vol. 131
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-12
A Novel Range-Spread Target Detection Approach for Frequency Stepped Chirp Radar
By
Progress In Electromagnetics Research, Vol. 131, 275-292, 2012
Abstract
This paper presents a novel range-spread target detection algorithm for frequency stepped chirp radar (FSCR) which transmits a chirp-pulse train with frequency stepped carriers. FSCR achieves high range resolution by synthetic wide-band technique, and its process includes intra-pulse matched filtering and pulse-to-pulse inverse discrete Fourier transform (IDFT) or wavelet transform. For FSCR, the high resolution range profile (HRRP) of a target is obtained by target extraction from overlapping HRRPs which is caused by oversampling. During the target extraction (sometimes called de-correlation), some strong scattering points of target echo are discarded, as the result, the signal-to-clutter ratio (SCR) might be reduced and the target detection capability is degraded. To solve this problem for FSCR, a novel detection algorithm without target extraction is addressed. The new algorithm based on the power spectrum of radar echo uses not only the amplitude information, but also the phase information of overlapping HRRPs of a target to improve the SCR, therefore, has significant performance. Moreover, the test statistic and the false alarm probability of the detector are derived, and the implementation procedure and the flow chart of the detection algorithm are designed. Finally, the detection performance is assessed by Monte-Carlo simulation, and the results indicate that the proposed algorithm has about 3 dB detection improvement in SCR compared with the spatial scattering density generalized likelihood ratio test (SSD-GRLT) detector, and at the same condition, is superior to the integrator detector. In addition, the proposed algorithm is robust and easy to implement.
Citation
Bo Liu, and Wenge Chang, "A Novel Range-Spread Target Detection Approach for Frequency Stepped Chirp Radar," Progress In Electromagnetics Research, Vol. 131, 275-292, 2012.
doi:10.2528/PIER12062510
References

1. Barton, , D. K., S. A. Leonov, and , Radar Technology Encyclopedia (Electronic Edition),, Artech House, 1998.

2. Han, , S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Effcient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research , Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

3. Calvo-Gallego, , J., F. Perez-Martnez, and , "Simple traffic surveillance system based on range-Doppler radar images," Progress In Electromagnetics Research, Vol. 125, 343-364, 2012.
doi:10.2528/PIER12011809

4. Huang, , C. W. and K. C. Lee, "Application of ICA technique to PCA based radar target recognition," Progress In Electromagnetics Research,, Vol. 105, 157-170, 2010.
doi:10.2528/PIER10042305

5. Crowgey, , B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306

6. Park, , S. H., H. T. Kim, and , "Stepped-frequency ISAR motion compensation using particle swarm optimization with an island model," Progress In Electromagnetics Research, Vol. 85, 25-37, 2008.
doi:10.2528/PIER08082107

7. Zhai, W., Y. Zhang, and , "Application of super-SVA to steppe chirp radar imaging with frequency band gaps between subchirps," Progress In Electromagnetics Research B, Vol. 30, 7182, 2011.

8. Park, , S.-H., H.-T. Kim, and K.-T. Kim, "Stepped-frequency ISAR motion compensation using particle swarm optimization with an island model ," Progress In Electromagnetics Research, Vol. 85, 25-37, 2008.
doi:10.2528/PIER08082107

9. Wehner, D. R., High-resolution Radar, Artech House, Boston, 1995..

10. De Maio, , A., "Polarimetric adaptive detection of range-distributed targets, ," IEEE Transactions on Signal Processing , Vol. 50, No. 9, 2159-2159, 2002.
doi:10.1109/TSP.2002.801925

11. Habib, M. A., M. Barkat, B. Aissa, and T. A. Denidni, "CA-CFAR detection performance of radar targets embedded in ``non centered chi-2 Gamma" clutter," Progress In Electromagnetics Research, Vol. 88, 135-148, 2008.
doi:10.2528/PIER08092203

12. Van Der Spek, , G. A., "Detection of a distributed target," IEEE Transactions on Aerospace and Electronics Systems, Vol. 7, No. 5, 922-931, 1971.
doi:10.1109/TAES.1971.310333

13. Hughes, P. K., "A high-resolution radar detection strategy," IEEE Transactions on Aerospace and Electronics Systems, Vol. 19, No. 5, 663-667, 1983.
doi:10.1109/TAES.1983.309368

14. Gerlach, K., M. Steiner, and F. C. Lin, "Detection of a spatially distributed target in white noise," IEEE Signal Processing Letters,, Vol. 4, 198-200, 1997.
doi:10.1109/97.596885

15. Gerlach, , K., M. J. Steiner, and , "Adaptive detection of range distributed targets," IEEE Transactions on Signal Processing,, Vol. 47, No. 7, 1844-1851, 1999.
doi:10.1109/78.771034

16. Conte, , E., A. De Maio, and G. Ricci, "GLRT-based detection algorithms for range-spread targets," IEEE Transactions on Signal Processing,, Vol. 49, No. 7, 1336-1348, 2001.
doi:10.1109/78.928688

17. De Maio, A., A. Farina, and , "Adaptive detection of range spread targets with orthogonal rejection," IEEE Transactions on Aerospace and Electronics Systems, Vol. 43, No. 2, 737-751, 2007.

18. Bandiera, , F., A. De Maio, A. S. Greco, and G. Ricci, "Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference, ," IEEE Transactions on Signal Processing, Vol. 55, No. 4, 1223-1237, 2007.
doi:10.1109/TSP.2006.888065

19. Gong, , Q., Z.-D. Zhu, and , "Study stap algorithm on interference target detect under non-homogenous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
doi:10.2528/PIER09101502

20. Hao, , C., F. Bandiera, J. Yang, D. Orlando, S. Yan, and C. Hou, "Adaptive detection of multiple point-like targets under conic constraints ," Progress In Electromagnetics Research, Vol. 129, 231-250, 2012.

21. Wang, , X., L. Jin, and J. Gao, "A study on detection algorithm for range-distributed targets in stepped-frequency radar," Modern Radar, Vol. 31, No. 5, 35-38, 2009.

22. Levanon, , N., "Stepped-frequency pulse-train radar signal," IEE Proceedings Radar, Sonar and Navigation,, Vol. 149, No. 6, 297-309, 2002.
doi:10.1049/ip-rsn:20020432

23. Tian, , B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system,"," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

24. Mao, , X., D.-Y. Zhu, L.Wang, and Z.-D. Zhu, "Comparative study of RMA and PFA on their responses to moving target," Progress In Electromagnetics Research, Vol. 110, 103-124, 2010..
doi:10.2528/PIER10090607

25. Wu, , Z.-S., J.-P. Zhang, L.-X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface ," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803

26. Chua, , M. Y., V. C. Koo, and , "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301

27. Li, , D., T. Long, and , "Target's redundancy removed algorithms of step frequency radar ," Acta Electronica Sinica, Vol. 28, No. 6, 60-63, 2000.

28. Zhang, , H., S. Zhang, and Q. Li, "Target extracting algorithm and system parameter design in stepped frequency modulated radar," Acta Electronica Sinica,, Vol. 35, No. 6, 1153-1158, 2007.

29. Oppenheim, A. V., R. W. Schafer, and , Discrete-time Signal Processing,, 3rd Ed., Prentice-Hall, Inc., 2009.

30. Miller, K. S., Multidimensional Gaussian Distributions,, Wiley, 1964..