Vol. 130
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-10
Investigation on Doppler Spectral Characteristics of Electromagnetic Backscattered Echoes from Dynamic Nonlinear Surfaces of Finite-Depth Sea
By
Progress In Electromagnetics Research, Vol. 130, 169-186, 2012
Abstract
The Doppler spectral characteristics of electromagnetic backscattered echoes from dynamic nonlinear surfaces of finite-depth sea is investigated with the second-order small-slope approximation (SSA-II). The revised nonlinear hydrodynamic choppy wave model (CWM) combining with an experiment-verified shoaling coefficient is utilized to model the finite-depth sea wave profiles, and the simulated surfaces of finite-depth sea show steeper crests and more flat troughs as depth decreases. First, Comparison of the Doppler spectra for linear sea surfaces and nonlinear choppy sea surfaces shows that nonlinear hydrodynamic effect greatly enhances the Doppler shift and the Doppler spectrum bandwidth, and the predicted results agree well with the rigorous numerical model data. The Doppler spectra of backscattered echoes from finite-depth sea with different depths are further evaluated. At small incident angles, the Doppler shifts and the spectra bandwidths are much lower for shallower sea, and the opposite situation can be gradually observed for increased incident angles. This indicates that the nonlinear wave-wave interactions among waves occur more frequently in finite-depth sea and the long waves will be suppressed while shorter wind waves will be boosted in shallower water. Moreover, the dependence of the Doppler spectral characteristics on polarization is also discussed.
Citation
Ding Nie, Min Zhang, Xupu Geng, and Ping Zhou, "Investigation on Doppler Spectral Characteristics of Electromagnetic Backscattered Echoes from Dynamic Nonlinear Surfaces of Finite-Depth Sea," Progress In Electromagnetics Research, Vol. 130, 169-186, 2012.
doi:10.2528/PIER12062509
References

1. Kurrant, D. J. and E. C. Fear, "Extraction of internal spatial features of inhomogeneous dielectric objects using near-field reflection data," Progress In Electromagnetics Research, Vol. 122, 197-221, 2012.
doi:10.2528/PIER11092105

2. Chen, H., M. Zhang, and H.-C. Yin, "Facet-based treatment on microwave bistatic scattering of three-dimensional sea surface with electrically large ship," Progress In Electromagnetics Research, Vol. 123, 385-405, 2012.
doi:10.2528/PIER11101108

3. Yang, W., Z.-Q. Zhao, C.-H. Qi, W. Liu, and Z.-P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

4. Baussard, A., M. Rochdi, and A. Khenchaf, "PO/Mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

5. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method ," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

6. Luo, W., M. Zhang, Y.-W. Zhao, and H. Chen, "An efficient hybrid high-frequency solution for the composite scattering of the ship on very large two-dimensional sea surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
doi:10.2528/PIERM09050103

7. Fabbro, V., "Apparent radar cross section of a large target illuminated by a surface wave above the sea," Progress In Electromagnetics Research, Vol. 50, 41-60, 2005.
doi:10.2528/PIER04050502

8. Zhang, M., Y.-W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

9. Chen, H., M. Zhang, D. Nie, and H. C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface ," Progress In Electromagnetics Research B, Vol. 18, 347-363, 2009.
doi:10.2528/PIERB09100508

10. Nie, D. and M. Zhang, "Bistatic scattering analysis for two-dimensional rough sea surfaces using an angular composite model," Int. J. Remote Sens., Vol. 32, No. 24, 9661-9672, 2011.
doi:10.1080/01431161.2011.574160

11. Mouche, A. A., B. Chapron, N. Reul, and F. Collard, "Predicted Doppler shifts induced by ocean surface wave displacements using asymptotic electromagnetic wave scattering theories," Waves Random Complex Media, Vol. 18, No. 1, 185-196, 2008.
doi:10.1080/17455030701564644

12. Zavorotny, V. U. and A. G. Voronovich, "Two-scale model and ocean radar Doppler spectra at moderate- and low-grazing angles," IEEE Trans. Antennas Propag., Vol. 46, No. 1, 84-92, 1998.
doi:10.1109/8.655454

13. Rino, C. L., T. L. Crystal, A. K. Koide, H. D. Ngo, and H. Guthart, "Numerical simulation of backscattering from linear and nonlinear ocean surface realizations," Radio Sci., Vol. 26, No. 1, 51-71, 1991.
doi:10.1029/90RS01687

14. Creamer, D. B., F. Henyey, R. Schult, and J. Wright, "Improved linear representation of sea surface waves," J. Fluid Mech., Vol. 205, 135-161, 1989.
doi:10.1017/S0022112089001977

15. Toporkov, J. V. and G. S. Brown, "Numerical simulations of scattering from time-varying, randomly rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 4, 1616-1625, 2000.
doi:10.1109/36.851961

16. Johnson, J. T., J. V. Toporkov, and G. S. Brown, "A numerical study of backscattering from time-evolving sea surfaces: Comparison of hydrodynamic models," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 11, 2411-2420, 2001.
doi:10.1109/36.964977

17. Soriano, G., M. Joelson, and M. Saillard, "Doppler spectra from a two-dimensional ocean surface at L-band," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 9, 2430-2437, 2006.
doi:10.1109/TGRS.2006.873580

18. Nouguier, F., C. A. Guérin, and G. Soriano, "Analytical techniques for the Doppler signature of sea surfaces in the microwave regime II: Nonlinear surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 12, 4920-4927, 2011.
doi:10.1109/TGRS.2011.2153207

19. Nouguier, F., C. A. Guérin, and B. Chapron, "Choppy wave model for nonlinear gravity waves," J. Geophys. Res. (JGR) --- Oceans, Vol. 114, No. C09012, 1-16, 2009.

20. Barrick, D. E. and B. J. Lipa, "The second-order shallow-water hydrodynamic coupling coe±cient in interpretation of HF radar sea echo," IEEE J. Ocean. Eng., Vol. 11, No. 2, 310-315, 1986.
doi:10.1109/JOE.1986.1145187

21. Lipa, B. J. and D. E. Barrick, "Extraction of sea state from HF radar sea echo: Mathematical theory and modeling," Radio Sci., Vol. 21, No. 1, 81-100, 1986.
doi:10.1029/RS021i001p00081

22. Holden, G. J. and L. R. Wyatt, "Extraction of sea state in shallow water using HF radar," Proc. Inst. Elect. Eng. F --- Radar Signal Process., Vol. 139, No. 2, 175-181, 1992.
doi:10.1049/ip-f-2.1992.0021

23. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and Doppler analysis of three-dimensional breaking wave crests at low-grazing angles ," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401

24. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607

25. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves Random Media, Vol. 11, No. 3, 247-269, 2001.

26. Soriano, G. and M. Saillard, "Modelization of the scattering of electromagnetic waves from the ocean surface," Progress In Electromagnetics Research, Vol. 37, 101-128, 2002.
doi:10.2528/PIER01111800

27. Berginc, G., "Small slope approximation method: A further study of vector wave scattering from two-dimensional surfaces and comparison with experimental data," Progress In Electromagnetics Research, Vol. 37, 251-287, 2007.

28. Li, X.-F. and X.-J. Xu, "Scattering and Doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 2, 603-611, 2011.
doi:10.1109/TGRS.2010.2060204

29. McCormick, M. E., Ocean Engineering Wave Mechanics, John Wiley & Sons Inc, New York, 1973.

30. Hasselmann, K., et al. "Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)," Dtsch. Hydrogr. Z. Suppl., Vol. 12, No. A8, 1-95, 1973.

31. Miche, M., "Mouvements ondulatoires de la mer en profondeur constante ou décroissante. forme limite de la houle lors de son d'eferlement. Application aux digues marines," Ann. Ponts Chaussées, Vol. 114, 25-78, 1944.

32. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, John Wiley & Sons Inc., New York, 2001.

33. Romeiser, R. and D. R. Thompson, "Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents ," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 1, 446-458, 2000.
doi:10.1109/36.823940