Vol. 42
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-07-24
Comprehensive Solution to Scattering by Bianisotropic Objects of Arbitrary Shape
By
Progress In Electromagnetics Research B, Vol. 42, 335-362, 2012
Abstract
This paper presents a method of moments (MoM) solution for the problems of electromagnetic scattering by inhomogeneous three-dimensional bianisotropic scatterers of any shape. The electromagnetic response of bianisotropy has been described by the constitutive relations of the most general form composed of four 3 x 3 matrices or tensors. The volume equivalence principle is used to obtain a set of mixed potential formulations for a proper description of the original scattering problem. Here, the total fields are separated into the incident fields and the scattered fields. The scattered fields are related to the electric and magnetic potentials which are excited by electric and magnetic bound charges and polarization currents. The body of the scatterer is meshed through the use of tetrahedral cells with face-based functions used to expand unknown quantities. At last, the Galerkin test method is applied to create a method of moments (MoM) matrix from which the numerical solution is obtained. Implemented in a MATLAB program, the numerical formulation is evaluated and verified for various types of scatterers. The results are compared with those of previous work, and a good agreement is observed. Finally, a scattering from a two-layered dispersive chiroferrite sphere is presented as the most general example.
Citation
Chong Mei, Moamer Hasanovic, Jay Kyoon Lee, and Ercument Arvas, "Comprehensive Solution to Scattering by Bianisotropic Objects of Arbitrary Shape," Progress In Electromagnetics Research B, Vol. 42, 335-362, 2012.
doi:10.2528/PIERB12062009
References

1. Nurgaliev, T., S. Miteva, A. P. Jenkins, and D. D. Hughes, "Investigation of MW characteristics of HTS microstrip and coplanar resonators with ferrite thin-film components," IEEE Trans. Microwave Theory Tech., Vol. 51, 33-40, Jan. 2003.
doi:10.1109/TMTT.2002.806944

2. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electron. Lett., Vol. 29, No. 12, 1048-1049, Jun. 1993.
doi:10.1049/el:19930699

3. Lindell, I. V., "Variational method for the analysis of lossless bi-isotropic (nonreciprocal chiral) waveguides," IEEE Trans. Microwave Theory Tech., Vol. 40, 402-405, Feb. 1992.
doi:10.1109/22.120115

4. Viitanen, A. J. and I. V. Lindell, "Chiral slab polarization transformer for aperture antennas," IEEE Trans. Antennas Propagat., Vol. 46, 1395-1397, Sep. 1998.
doi:10.1109/8.719989

5. Kluskens, M. S. and E. H. Newman, "A microstrip line on a chiral substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, 1889-1891, Nov. 1991.

6. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE Antennas and Propagation Society Newsletter, Vol. 30, 6-12, Oct. 1988.

7. Krowne, C. M., "Electromagnetic properties of nonreciprocal composite chiral-ferrite media," IEEE Trans. Antennas Propagat., Vol. 41, 1289-1293, Sep. 1993.
doi:10.1109/8.247756

8. Krowne, C. M., "Full-wave spectral Green's function integral-equation calculation of coplanar ferroelectric thin-film transmission structures," Microwave Opt. Technol. Lett., Vol. 26, 187-192, 2000.
doi:10.1002/1098-2760(20000805)26:3<187::AID-MOP15>3.0.CO;2-E

9. Krowne, C. M., "Theoretical considerations for finding anisotropic permittivity in layered ferroelectric/ferromagnetic structures from full-wave electromagnetic simulations," Microwave Opt. Technol. Lett., Vol. 28, 63-69, 2001.
doi:10.1002/1098-2760(20010105)28:1<63::AID-MOP18>3.0.CO;2-Q

10. Krowne, C. M., M. Daniel, S. W. Kirchoefer, and J. M. Pond, "Anisotropic permittivity and attenuation extraction from propagation constant measurements using an anisotropic full-wave Green's function solver for coplanar ferroelectric thin-film devices ," IEEE Trans. Microwave Theory Tech., Vol. 50, 537-548, Feb. 2002.
doi:10.1109/22.982233

11. Hanson, G. W., "A numerical formulation of dyadic Green's functions for planar bianisotropic media with application to printed transmission lines ," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 144-151, Jan. 1996.
doi:10.1109/22.481396

12. Cloete, J. H., M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Comm., Vol. 55, No. 4, 223-239, Jul. 2001.

13. Demir, V., A. Elsherbeni, D. Worasawate, and E. Arvas, "A graphical user interface (GUI) for plane wave scattering from a conducting, dielectric or a chiral sphere,", Software at ACES web site: http://aces.ee.olemiss.edu, Syracuse, Sep. 2004 .

14. Tsalamengas, J. L., "Interaction of electromagnetic waves with general bianisotropic slabs," IEEE Trans. Microwave Theory Tech., Vol. 4, 1870-1878, Oct. 1992.

15. Demir, V., "Electromagnetic scattering from three-dimensional chiral objects using the FDTD method,", Ph.D. Dissertation, Syracuse University, 2004.

16. Alu, A., F. Bilotti, and L. Vegni, "Extended method of line procedure for the analysis of microwave components with bianisotropic inhomogeneous media," IEEE Trans. Antennas Propagat., Vol. 51, 1582-1589, Jul. 2003.

17. Yagli, A. F., "Electromagnetic scattering from three-dimensional gyrotropic objects using the transmission line modeling (TLM) method,", Ph.D. Dissertation, Syracuse University, 2006.

18. Demir, A., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propagat., Vol. 53, 3374-3384, Oct. 2005.

19. Bilotti, F., A. Toscano, and L. Vegni, "FEM-BEM formulation for the analysis of cavity-backed patch antennas on chiral substrates," IEEE Trans. Antennas Propagat., Vol. 51, 306-311, Feb. 2003.
doi:10.1109/TAP.2003.809076

20. Valor, L. and J. Zapata, "An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials," IEEE Trans. Microwave Theory Tech., Vol. 44, 291-296, Feb. 1996.
doi:10.1109/22.481579

21. Valor, L. and J. Zapata, "A simplified formulation to analyze inhomogeneous waveguide with lossy chiral media using the finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 46, 185-187, Feb. 1998.
doi:10.1109/22.660985

22. Mei, C., M. Hasanovic, J. K. Lee, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomoge-neous bianisotropic body," PIERS Online, Vol. 3, No. 5, 680-684, 2007.
doi:10.2529/PIERS061005231254

23. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

24. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, 77-85, Jan. 1984.
doi:10.1109/TAP.1984.1143193

25. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. 32, 276-281, Mar. 1984.
doi:10.1109/TAP.1984.1143304

26. Carvalho, S. A. and L. S. Mendes, "Scattering of EM waves by inhomogeneous dielectrics with the use of the method of moments and 3-D solenoidal basis functions," Microwave and Optical Technology Letters, Vol. 23, No. 1, 42-46, Oct. 1999.
doi:10.1002/(SICI)1098-2760(19991005)23:1<42::AID-MOP12>3.0.CO;2-N

27. Worasawate, D., "Electromagnetic scattering from an arbitrarily shaped three-dimensional chiral body,", Ph.D. Dissertation, Syracuse University, 2002.

28. Hasanovic, M., "Electromagnetic scattering from an arbitrarily shaped three-dimensional inhomogeneous chiral body,", Ph.D. Dissertation, Syracuse University, 2006.

29. Zhu, X. Q., Y. L. Geng, and X. B. Wu, "Application of MOM-CGM-FFT method to scattering from three-dimensional anisotropic scatterers," Chinese J. Radio Sci., Vol. 17, No. 3, 209-215, 2002 (in Chinese).

30. Geng, Y., X. Wu, and L. Li, "Analysis of electromagnetic scattering by a plasma anisotropic sphere," Radio Science, Vol. 38, No. 6, 12-1-12-12, Dec. 2003.
doi:10.1029/2003RS002913

31. Geng, Y. and X. Wu, "A plane electromagnetic wave scattering by a ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 161-179, 2004.
doi:10.1163/156939304323062022

32. Nie, X. C., N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, "A fast combined field volume integral equation solution to EM scattering by 3-D dielectric objects of arbitrary permittivity and permeability," IEEE Trans. Antennas Propagat., Vol. 54, 961-969, Mar. 2006.
doi:10.1109/TAP.2006.869927

33. Mendes, L. S. and S. A. Carvalho, "Scattering of EM waves by homogeneous dielectrics with the use of the method of moments and 3D solenoidal basis functions," Microwave and Optical Technology Letters, Vol. 12, No. 6, 327-331, Aug. 1996.
doi:10.1002/(SICI)1098-2760(19960820)12:6<327::AID-MOP7>3.0.CO;2-H

34. Kulkarni, S., R. Lemdiasov, R. Ludwig, and S. Makarov, "Comparison of two sets of low-order basis functions for tetrahedral VIE modeling," IEEE Trans. Antennas Propagat., Vol. 52, 2789-2794, Oct. 2004.