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Abstract—This paper presents a method of moments (MoM) solution
for the problems of electromagnetic scattering by inhomogeneous three-
dimensional bianisotropic scatterers of any shape. The electromagnetic
response of bianisotropy has been described by the constitutive
relations of the most general form composed of four 3 × 3 matrices
or tensors. The volume equivalence principle is used to obtain a
set of mixed potential formulations for a proper description of the
original scattering problem. Here, the total fields are separated into
the incident fields and the scattered fields. The scattered fields are
related to the electric and magnetic potentials which are excited by
electric and magnetic bound charges and polarization currents. The
body of the scatterer is meshed through the use of tetrahedral cells with
face-based functions used to expand unknown quantities. At last, the
Galerkin test method is applied to create a method of moments (MoM)
matrix from which the numerical solution is obtained. Implemented
in a MATLAB program, the numerical formulation is evaluated and
verified for various types of scatterers. The results are compared with
those of previous work, and a good agreement is observed. Finally, a
scattering from a two-layered dispersive chiroferrite sphere is presented
as the most general example.

1. INTRODUCTION: BIANISOTROPIC MATERIALS

Study of bianisotropic materials, their properties and interaction
with electromagnetic fields is one of the main research areas that
attract electromagnetic community in recent years. Rapid evolution
of material technology has triggered the demand for applications of
complex media and further revitalized the interest of the researchers
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in this particular field. Dielectric crystals and polymers are being
used in many electronic and optical devices. Magnetic anisotropy
has always played an important role in ferromagnetic film circuits [1].
Recent research indicates that chiral materials, as well as biisotropic
materials, are being investigated for various applications such as
antenna radomes [2], waveguides [3], polarization transformers [4],
and microstrip circuit materials [5]. Other complex types of media,
such as chiroferrites, which are combinations of chiral materials and
ferrites, as well as Faraday chiral materials, are also studied [6, 7]. In
general, anisotropic and bianisotropic materials are being researched
as substrates for microstrip antennas, RF circuits, and MMICs [8–
11], and as radar absorbers in anechoic chambers [12]. A study
of electromagnetic scattering by inhomogeneous bianisotropic bodies
is also important for applications such as detection of airborne
particulates, medical diagnostics, power absorption in biological bodies
and performance study of antennas.

The concept of bianisotropy has two origins. First, it is a
generalization of the concept of anisotropy, and secondly, it is an
extension of the magnetoelectric coupling property possessed by media
such as isotropic chiral materials. The media that can be classified into
a general category of bianisotropic media include gyrotropic media,
biisotropic chiral media, Faraday chiral media, and moving media.

Macroscopic electromagnetics provides a description of a certain
material medium through constitutive relations. Constitutive relations
characterize the material properties that govern the interaction
between electromagnetic waves and the media. Once these relations
have been formulated, the solution of the electromagnetic field problem
is reduced to a set of partial differential equations with certain
boundary conditions.

For linear and stationary media, the constitutive relations in the
most general form can be described by the following set of equations,

D̄ = ¯̄ε · Ē + ¯̄ξ · H̄
B̄ = ¯̄ζ · Ē + ¯̄µ · H̄

(1)

where ¯̄ε is the permittivity tensor, ¯̄µ is the permeability tensor, and
¯̄ξ, and ¯̄ζ are the magnetoelectric tensors. In this paper, the overbar ¯
denotes a vector and the double overbar ¯̄ denotes a tensor.

A medium is bianisotropic when these tensors are all assumed to
be generalized 3 × 3 matrices or tensors. One of the fundamental
properties of bianisotropic media is the cross-coupling between the
electric and magnetic fields. This means that, when placed in an
electric or magnetic field, a bianisotropic medium becomes both
polarized and magnetized.
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If the tensors are in the form of ¯̄ε = ε · ¯̄I, ¯̄µ = µ · ¯̄I, ¯̄ξ = ξ · ¯̄I, and
¯̄ζ = ζ · ¯̄I, where ε, µ, ξ, and ζ are scalars and ¯̄I is the unit tensor, the
medium is biisotropic, and its constitutive relations can be written as

D̄ = εĒ + ξH̄

B̄ = ζĒ + µH̄.
(2)

If ξ and ζ are zero, and ε and µ are non-zero scalars, the medium
is simply an isotropic medium, and Ē is parallel to D̄ and H̄ is parallel
to B̄.

As shown in the definitions above, all linear and stationary media,
isotropic or anisotropic, biisotropic or bianisotropic, can be treated as
bianisotropic or special cases of bianisotropic media.

With the development of material techniques, there is an urgent
need for a fast and accurate general-purpose electromagnetic field
solver that could handle all kinds of inhomogeneity, dispersion,
anisotropy, chirality, and even bianisotropy. There exist several
methodologies to analyze electromagnetic field interaction with
complex media. For example, analytical methods such as Mie series
expansion [13] and a matrix technique [14] are successfully used to
study source radiation and wave propagation problems in simple
structures such as biisotropic spheres or bianisotropic multilayer
transmission lines. Three dimensional (3D) full-wave numerical
algorithms in the time domain such as finite-difference time-domain
(FDTD) method, the method of line (MoL), and transmission line
modeling method (TLM) have been extended to model electromagnetic
interaction with complex materials such as chiral materials and
gyrotropic materials [15–17]. More recent research efforts are related
to scattering from homogeneous dispersive anisotropic and biisotropic
materials. However, each of these methods has certain limitations.
Analytical methods are difficult to apply to complex structures that
involve 3D arbitrarily shaped geometries. When solving problems
that involve dispersive materials, time domain methods rely on the
Z-transform of analytical expressions that describe the dispersion
properties of a material [18]. These analytical expressions are in
many cases very difficult to obtain. Corresponding computer programs
also need to be adapted for the different dispersion properties of the
material. Current frequency domain methods such as finite-element
method (FEM), FEM-boundary element method (FEM-BEM) [19–21],
and method of moments (MoM) are also able to treat wave propagation
and radiation problems related to chiral media or anisotropic materials.
Generally, problems are solved in frequency domain, so there is no need
to obtain analytic expressions of the material dispersion in advance.

In general, there has been little research work in solving problems
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that involve general bianisotropic materials. The main purpose of this
paper is to offer a method of moments solution to problems that involve
3D inhomogeneous bianisotropic scatterers of an arbitrary shape. The
developed formulation does not put any limits on the geometrical
assignment of material properties to the scatterer. It can be applied
to multilayered scatterers, and scatterers with materials assigned to
different regions of the scatterer in a linear, exponential or any other
fashion, etc..

2. FORMULATION OF THE PROBLEM

Let us consider an inhomogeneous bianisotropic body of arbitrary
three-dimensional shape characterized by the constitutive relations (1).

As shown in Figure 1, if the body is illuminated by a time-
harmonic electromagnetic wave with ejωt dependence, the fields in the
body are described by Maxwells equations as [22]

∇ · Ē =
ρeb

ε0

∇ · H̄ =
ρmb

µ0

∇× Ē = −jωµ0H̄ − J̄mp

∇× H̄ = jωε0Ē + J̄ep

(3)

where J̄ep and J̄mp are the electric and magnetic polarization currents,
and the ρeb and ρmb are electric bound charges and magnetic bound
charges, respectively. Bound charge densities and polarization current
densities are related to the electric and magnetic polarizations by

ρeb = −∇ · P̄
ρmb = −µ0∇ · M̄
J̄ep = jωP̄

J̄mp = jωµ0M̄

(4)

where P̄ and M̄ represent electric polarization and magnetic polariza-
tion (magnetization) of the bianisotropic scatterer, respectively, and
given by:

P̄ = D̄ − ε0Ē

M̄ =
1
µ0

B̄ − H̄.
(5)

The total fields Ē and H̄ can be separated into two components:
the incident field component (Ēinc, H̄ inc) produced by the primary
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Figure 1. Inhomogeneous bian-
isotropic body in free space il-
luminated by an electromagnetic
wave.

Figure 2. Incident field and
scattered field.

sources and the scattered component (Ēs, H̄s) produced as a result of
scattering from the bianisotropic body, as shown in Figure 2.

Hence, one can write the total fields as

Ē = Ēs + Ēinc

H̄ = H̄s + H̄ inc
(6)

where the known incident fields Ēinc and H̄ inc satisfy

∇ · Ēinc = 0

∇ · H̄ inc = 0

∇× Ēinc = −jωµ0H̄
inc

∇× H̄ inc = jωε0Ē
inc

(7)

and the unknown scattered fields Ēs and H̄s satisfy

∇ · Ēs =
ρeb

ε0

∇ · H̄s =
ρmb

µ0

∇× Ēs = −jωµ0H̄
s − J̄mp

∇× H̄s = jωε0Ē
s + J̄ep.

(8)

To solve for the scattered field, one can break the scattered field
into two parts, namely,

Ēs = Ēs
1 + Ēs

2

H̄s = H̄s
1 + H̄s

2

(9)
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where Ēs
1 and H̄s

1 are the fields generated by the electric charges and
electric currents only, and Ēs

2 and H̄s
2 are the fields generated by the

magnetic charges and magnetic currents only.
Ēs

1 and H̄s
1 satisfy

∇ · Ēs
1 =

ρeb

ε0

∇ · H̄s
1 = 0

∇× Ēs
1 = −jωµ0H̄

s
1

∇× H̄s
1 = jωε0Ē

s
1 + J̄ep.

(10)

Ēs
2 and H̄s

2 satisfy

∇ · Ēs
2 = 0

∇ · H̄s
2 =

ρmb

µ0

∇× Ēs
2 = −jωµ0H̄

s
2 − J̄mp

∇× H̄s
2 = jωε0Ē

s
2.

(11)

The solutions of Equation (10) can be obtained by introducing the
magnetic vector potential Ā and the electric scalar potential V , so
that

Ēs
1 = −jωĀ−∇V

H̄s
1 =

1
µ0
∇× Ā.

(12)

Using Green’s function in free space G(r̄, r̄′)

G(r̄, r̄′) =
e−jk0|r̄−r̄′|

4π|r̄ − r̄′| , (13)

where k0 is the wavenumber in free space, defined as k0 = ω
√

ε0µ0,
r̄ the position vector of the field point, r̄′ the position vector of the
source point, and Ā and V can be expressed in terms of the polarization
current and the bound charge density as

Ā = µ0

∫

V
J̄ep(r̄′)G(r̄, r̄′)dv′ (14)

V =
1
ε0

∫

V
ρeb(r̄′)G(r̄, r̄′)dv′ (15)

Ā and V are related by the Lorentz gauge

∇ · Ā + jωε0µ0V = 0. (16)
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Similarly, Equation (11) can be solved by introducing electric
vector potential F̄ and magnetic scalar potential U

H̄s
2 = −jωF̄ −∇U

Ēs
2 = − 1

ε0
∇× F̄ .

(17)

F̄ and U can be expressed in terms of the magnetic polarization current
and the bound magnetic charge density as

F̄ = ε0

∫

V
J̄mp

(
r̄′

)
G

(
r̄, r̄′

)
dv′ (18)

U =
1
µ0

∫

V
ρmb

(
r̄′

)
G

(
r̄, r̄′

)
dv′. (19)

F̄ and U are related by
∇ · F̄ + jωε0µ0U = 0. (20)

The total scattered fields then can be written as

Ē = Ēinc − jωĀ−∇V − 1
ε0
∇× F̄

H̄ = H̄ inc − jωF̄ −∇U +
1
µ0
∇× Ā.

(21)

Note that when the surface charges σeb and σmb are present on the
boundary, the surface integrals must also be evaluated and added to
find V and U .

Ā = µ0

∫

V
J̄ep

(
r̄′

)
G

(
r̄, r̄′

)
dv′ (22)

V =
1
ε0

∫

V
ρeb

(
r̄′

)
G

(
r̄, r̄′

)
dv′ +

1
ε0

∫

S
σeb

(
r̄′

)
G

(
r̄, r̄′

)
ds′ (23)

F̄ = ε0

∫

V
J̄mp

(
r̄′

)
G

(
r̄, r̄′

)
dv′ (24)

U =
1
µ0

∫

V
ρmb

(
r̄′

)
G

(
r̄, r̄′

)
dv′ +

1
µ0

∫

S
σmb

(
r̄′

)
G

(
r̄, r̄′

)
ds′. (25)

Following the flow chart in Figure 3, the unknown quantities in
the constructed integral equations are Ē and H̄. Since the other field
quantities J̄ep and J̄mp or D̄ and B̄ are linear transforms of Ē and H̄,
the integral equations can be easily rewritten in a form where the only
unknown quantities are J̄ep and J̄mp or D̄ and B̄ instead.

For a general inhomogeneous bianisotropic body characterized by
the constitutive relations (1), we may express Ē and H̄ in terms of D̄
and B̄ as follows [

Ē
H̄

]
=

[
¯̄α1 ¯̄α2
¯̄α3 ¯̄α4

] [
D̄
B̄

]
(26)
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Figure 3. Flow chart of building integral representations.

where ¯̄αi=1,2,3,4 is given by
[

¯̄α1 ¯̄α2
¯̄α3 ¯̄α4

]
=

[
¯̄ε ¯̄ξ
¯̄ζ ¯̄µ

]−1

. (27)

Substituting (26) into (21), we have

¯̄α1D̄ + ¯̄α2B̄ + jωĀ +∇V +
1
ε0
∇× F̄ = Ēinc

¯̄α3D̄ + ¯̄α4B̄ + jωF̄ +∇U − 1
µ0
∇× Ā = H̄ inc

(28)

where the vector and scalar potentials Ā, V , F̄ , and U can also be
written as functions of D̄ and B̄.

Substituting (26) into (5), we have
[

P̄
µ0M̄

]
=

[ ¯̄β1
¯̄β2

¯̄β3
¯̄β4

] [
D̄
B̄

]
(29)

where [ ¯̄β1
¯̄β2

¯̄β3
¯̄β4

]
=

[ ¯̄I − ε0 ¯̄α1 −ε0 ¯̄α2

−µ0 ¯̄α3
¯̄I − µ0 ¯̄α4

]
. (30)
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Finally, (22)–(25) can be rewritten as functions of D̄ and B̄ in the
following form:

Ā (r̄) = µ0

∫

V
J̄ep

(
r̄′

)
G

(
r̄, r̄′

)
dv′

= jωµ0

∫

V

[
¯̄β1

(
r̄′

)
D̄

(
r̄′

)
+ ¯̄β2

(
r̄′

)
B̄

(
r̄′

)]
G

(
r̄, r̄′

)
dv′ (31)

V (r̄) =
1
ε0

∫

V
ρeb

(
r̄′

)
G

(
r̄, r̄′

)
dv′ +

1
ε0

∫

S
σeb

(
r̄′

)
G

(
r̄, r̄′

)
ds′

=− 1
ε0

∫

V
∇′ ·

[
¯̄β1

(
r̄′

)
D̄

(
r̄′

)
+ ¯̄β2

(
r̄′

)
B̄

(
r̄′

)]
G

(
r̄, r̄′

)
dv′

+
1
ε0

∫

S

[
¯̄β1

(
r̄′

)
D̄

(
r̄′

)
+ ¯̄β2

(
r̄′

)
B̄

(
r̄′

)]tail

ofn̂
· n̂G

(
r̄, r̄′

)
ds′

− 1
ε0

∫

S

[
¯̄β1

(
r̄′

)
D̄

(
r̄′

)
+ ¯̄β2

(
r̄′

)
B̄

(
r̄′

)]head

ofn̂
· n̂G

(
r̄, r̄′

)
ds′ (32)

F̄ (r̄) = ε0

∫

V
J̄mp

(
r̄′

)
G

(
r̄, r̄′

)
dv′

= jωε0

∫

V

[
¯̄β3

(
r̄′

)
D̄

(
r̄′

)
+ ¯̄β4

(
r̄′

)
B̄

(
r̄′

)]
G

(
r̄, r̄′

)
dv′ (33)

U (r̄) =
1
µ0

∫

V
ρmb

(
r̄′

)
G

(
r̄, r̄′

)
dv′ +

1
µ0

∫

S
σmb

(
r̄′

)
G

(
r̄, r̄′

)
ds′

= − 1
µ0

∫

V
∇′ ·

[
¯̄β3

(
r̄′

)
D̄

(
r̄′

)
+ ¯̄β4

(
r̄′

)
B̄

(
r̄′

)]
G

(
r̄, r̄′

)
dv′

+
1
µ0

∫

S

[
¯̄β3

(
r̄′

)
D̄

(
r̄′

)
+ ¯̄β4

(
r̄′

)
B̄

(
r̄′

)]tail

ofn̂
· n̂G

(
r̄, r̄′

)
ds′

− 1
µ0

∫

S

[
¯̄β3

(
r̄′

)
D̄

(
r̄′

)
+ ¯̄β4

(
r̄′

)
B̄

(
r̄′

)]head

ofn̂
· n̂G

(
r̄, r̄′

)
ds′(34)

Substituting (31)–(34) into (28), we obtain a set of integral
equations where the only unknowns are D̄ and B̄.

Following the similar procedure, the integral equations can also
be rewritten in a form where the only unknowns are J̄ep and J̄mp.

3. SOLUTION USING THE METHOD OF MOMENTS

An inhomogeneous body with an arbitrary 3D shape can be divided
into many small cells. If the cell is small enough, the material within
the cell can be assumed to be homogeneous. Constitutive properties at
the centroid of a cell are assigned to the entire cell. Adjacent cells may
possess different constitutive properties to model the inhomogeneity.
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As electromagnetic waves propagate through cells, bound charges and
polarization currents may exist inside the cells, and bound surface
charges may exist on the cell boundaries.

Meshing the body by many little tetrahedra may conform with
object surfaces, plus tetrahedra have the least amount of faces and
vertices in all 3D objects and the complexity of meshing result is
the least among all the methods. For these reasons, although the
implementation of tetrahedral mesh is not as straightforward and easy
as others, the scatterers in this research were all meshed by tetrahedra.

RWG functions are commonly used basis functions associated
with tetrahedral mesh. These functions were first introduced by Rao,
Wilton and Glisson as basis functions to represent surface currents
in 2D triangle mesh [23]. Later, they extended the concept to 3D
tetrahedral meshing and used the RWG basis functions to represent
flux densities D̄ and B̄ [24, 25]. In 3D tetrahedral meshing, each basis
function is associated with one face. As shown in Figure 4, for the nth
face shared by a pair of tetrahedra, one tetrahedron is noted as T+

n ,
and the other one as T−n . The fourth point in tetrahedron T±n which
is not on the face n is named as the free vertex of T±n .

The RWG function for the nth face is defined as

f̄n(r̄) = f̄+
n (r̄) = +

sn

3W+
n

(r̄ − r̄+
n ) =

sn

3W+
n

ρ̄+
n , ∀r̄ ∈ T+

n

f̄n(r̄) = f̄−n (r̄) = − sn

3W−
n

(r̄ − r̄−n ) =
sn

3W−
n

ρ̄−n , ∀r̄ ∈ T−n

f̄n(r̄) = 0, ∀r̄ ∈ elsewhere

(35)

where sn is the area of the face n. W±
n is the volume of T±n . The

vector r̄ is the position vector from the origin to the location of the

Figure 4. RWG basis function.
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field point, and r̄±n is the position vector from the origin to the location
of the free vertex in T±n . The vector ρ̄+

n is defined as pointing from the
free vertex in T +

n to the field point, and ρ̄−n is defined as the vector
pointing from the field point to the free vertex in T−n .

Each RWG basis function is continuous along the direction which
is normal to its associated face inside the scatterer. It is therefore only
suitable to use a linear combination of basis functions to approximate
those quantities which possess the same property. It is clear that
Ē and H̄ are not continuous along the direction which is normal to
the boundary, hence they cannot be expanded directly by the RWG
functions. But it is well known that in a source free region, the electric
and magnetic flux densities D̄ and B̄ are continuous along the direction
which is normal to the boundary. If all the unknown quantities in the
integral Equations (21) are related to D̄ and B̄ as shown in (28) instead,
a linear combination of RWG basis functions can be applied to expand
all the D̄ and B̄ in (28).

Applying Galerkin’s method, and testing Equation (21) with every
basis function f̄m, we obtain

jω < f̄m, Ā(r̄) > + < f̄m,∇V̄ (r̄) > + < f̄m,∇× F̄ (r̄)
ε0

>

+ < f̄m, Ē(r̄) >=< f̄m, Ēinc(r̄) >

jω < f̄m, F̄ (r̄) > + < f̄m,∇Ū(r̄) > − < f̄m,∇× Ā(r̄)
µ0

>

+ < f̄m, H̄(r̄) >=< f̄m, H̄ inc(r̄) >

(36)

where the symmetric product of two functions f̄(r̄) and ḡ(r̄) is defined
as

< f̄(r̄), ḡ(r̄) >=
∫

V
f̄(r̄) · ḡ(r̄)dτ, (37)

and domain T is the entire space.
Every term in (36) is expanded in terms of unknown coefficients

{Dn, Bn, n = 1, 2, . . . , N}. Then (36) is written for each integer value
of m from 1 to N . The result is the following matrix equation.[

(Cmn) (Ymn)
(Zmn) (Amn)

] [
(Dn)
(Bn)

]
=

[
(Em)
(Hm)

]
(38)

where Zmn, Amn, Cmn, and Ymn are N by N matrices, and Dn, Bn,
En and Hn are N dimensional vectors.

The matrix element Zmn is given by
Zmn = jω < f̄m, F̄ (r̄) >Dn + < f̄m, ∇U(r̄) >Dn

− < f̄m, ∇× Ā(r̄)
µ0

>Dn + < f̄m, ¯̄α3(r̄)D̄(r̄) >n

(39)
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The matrix element Amn is given by

Amn = jω < f̄m, F̄ (r̄) >Bn + < f̄m, ∇U(r̄) >Bn

− < f̄m, ∇× Ā(r̄)
µ0

>Bn + < f̄m, ¯̄α4(r̄)D̄(r̄) >n

(40)

The matrix element Cmn is given by

Cmn = jω < f̄m, Ā(r̄) >Dn + < f̄m, ∇V (r̄) >Dn

+ < f̄m, ∇× F̄ (r̄)
ε0

>Dn + < f̄m, ¯̄α1(r̄)D̄(r̄) >n

(41)

The matrix element Ymn is given by

Ymn = jω < f̄m, Ā(r̄) >Bn + < f̄m, ∇V (r̄) >Bn

+ < f̄m, ∇× F̄ (r̄)
ε0

>Bn + < f̄m, ¯̄α2(r̄)D̄(r̄) >n

(42)

where, for the particular value n, < f̄m, F̄ (r̄) >Dn is < f̄m(r̄), F̄ (r̄) >
with Dn = 1, (Dj = 0, j = 1, 2, . . . , N ; j 6= n) and (Bj = 0, j =
1, 2, . . . , N). The quantities < f̄m,∇U(r̄) >Dn , < f̄m,∇ × Ā(r̄)

µ0
>Dn ,

and < f̄m, ¯̄α3(r̄)D̄(r̄) >n are similarly related to < f̄m,∇U(r̄) >,
< f̄m,∇× Ā(r̄)

µ0
>, and < f̄m, ¯̄α3(r̄)D̄(r̄) >, respectively.

The indicated substitutions on their right-hand sides expand (39)–
(42) to
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Ī−1n

(
r̄c+
m

)
]

−ω2µ0
smρ̄c−

m

3
·
[

¯̄β+
1nsn

3
Ī+
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where

Ī±1n (r̄) =
1

W±
n

∫

T±n
ρ̄
′±
n G

(
r̄, r̄′

)
dτ ′, (47)
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dτ ′ (48)
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Integral I±3n( ¯̄β, T±m) is evaluated as follows
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where ¯̄β is a tensor, ST±m ,i, i = 1, 2, 3, 4 represents the ith faces
of tetrahedron T±m , and n̂T±m ,i is a unit vector in a direction which
is normal to the ith face of tetrahedron T±m . n̂T+

m ,i points toward
the outside of tetrahedron T+

m and n̂T−m ,i points toward the inside of
tetrahedron T−m .

Integral I±sn( ¯̄β, r̄) is evaluated as follows

I±sn
(

¯̄β, r̄
)

=
sn

3W±
n

4∑

i=1


 ¯̄β

∫

S
T±n ,i

ρ̄
′±
n G

(
r̄, r̄ ′

)
ds′


 · n̂T±n ,i. (51)

Here, ¯̄β is a tensor. ST±n ,i, i = 1, 2, 3, 4 is the ith face of the tetrahedron
T±n , and n̂T±n ,i is a unit vector in the direction that is normal to the
face ST±n ,i, pointing from the tetrahedron T+

n to the tetrahedron T−n .

Finally, Tr( ¯̄β) is the trace of the tensor ¯̄β, defined as the
summation of the diagonal elements of ¯̄β.

While developing a solution to the problem of interest, a special
care has been taken to the evaluation of the corresponding integrals
presented above. For example, certain volume and surface integrals
become singular when evaluated at the centroids of meshing cells. In
such cases, analytical methods introduced by Wilton, et al. in [25] can
be used to evaluate these singular integrals.
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4. NUMERICAL RESULTS

A MATLAB program is developed to set up the MoM matrix equation,
and by solving the MoM matrix equation, the electromagnetic
fields inside the scatterer are obtained. Bound charge distribution,
polarization current distribution, and the fields outside the scatterer
are all calculated from the internal fields. The bistatic radar cross
section (RCS), an important property of a scattering object, is also
calculated from the internal fields. In this section electromagnetic
scattering problems involving various materials and geometries are
solved by the MATLAB program that we developed. These
electromagnetic scattering problems were also studied and solved
previously by other researchers using different methods. The numerical
results obtained by using the method presented in this paper are then
compared with the solutions obtained previously by other researchers
to validate the theoretic formulations and implementation of the
computer program. It also shows that the method presented in this
paper is general enough to handle various cases which had to be solved
by different methods previously.

A case of electromagnetic scattering by a homogeneous dielectric
sphere is first considered and the results are compared with the
solutions obtained by Demir’s scattering field solver [13] and with
the work of Schaubert et al. in [24]. An inhomogeneous dielectric
sphere scattering problem is also solved and checked with the results
of Carvalho et al. in [26]. The more complicated case of a magnetic
and dielectric sphere is analyzed to compare with the solution obtained
by Demir’s solver [13]. The cases involving a homogeneous or
inhomogeneous chiral sphere are solved to compare with results
in Worasawate’s dissertation [27] and Hasanovic’s dissertation [28].
Gyroelectric and gyromagnetic sphere cases are investigated and
checked with results of Geng and Zhu in their work [29–31] and Yagli’s
dissertation [17]. The results of scattering from chiral materials in
cubical and cylindrical geometries are also checked with [28]. Here we
present only three cases for validation of our results.

Copolarized and cross-polarized bistatic radar cross sections σθθ

of φ = 0◦ and σφθ of φ = 90◦ are shown in Figure 6 for a two-layered
dielectric sphere shown in Figure 5. The sphere is of radius R = r2 and
contains two layers of dielectric material of different permittivities. The
inner sphere has a radius r1 = 0.5r2 and has the relative permittivity
εr1 = 4 while the outside layer has the relative permittivity εr2 = 9.
The sphere is illuminated by a plane electromagnetic wave propagating
in the z direction, which has its electric field in the x direction, i.e.,
Ēinc = x̂Eince−jk0z and H̄ inc = ŷH ince−jk0z where Einc = 377 [V/m].
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Figure 5. Two-layered dielectric sphere, k0r2 = 0.408, r2/r1 = 2,
εr1 = 4, εr2 = 9.

Figure 6. Bistatic radar cross sections σθθ and σφθ of a two-layered
dielectric sphere, k0r2 = 0.408, r2/r1 = 2, εr1 = 4, εr2 = 9.
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Carvalho and Mendes solved the same problem in their work [26]
with the use of the method of moments and 3-D solenoidal basis
functions. The exact RCS results using the method of Mie’s series
expansion is presented in [26] as comparison. A good agreement can
be observed between our numerical result and the exact solutions.

To further validate the proposed method, a finite circular
chiral cylinder shown in Figure 7 has been illuminated by a plane
electromagnetic wave and investigated as a scatterer. The radius R of
the cylinder is so chosen that k0R = 1.5 and the height of the cylinder
is h = 0.35λ0 where λ0 = 2π/k0 and k0 is the wavenumber in free
space.

Copolarized and cross-polarized bistatic radar cross sections σθθ

of φ = 0◦ and σφθ of φ = 0◦ are shown in Figure 8. The numerical
results are compared with the results shown in [27] and [28] and a good
agreement is observed.

As a third example, we present the results of scattering by a
homogeneous gyroelectric sphere shown in Figure 9. The sphere is of

radius R and has the relative permittivity tensor ¯̄εr =

[ 5 j 0
−j 5 0
0 0 7

]

and relative permeability µr = 1.
The sphere is illuminated by a plane electromagnetic wave

propagating in the z direction, which has its electric field in the x
direction, i.e., Ēinc = x̂Eince−jk0z and H̄ inc = ŷH ince−jk0z where
Einc = 1[V/m].

Figure 7. Chiral cylinder illuminated by a plane EM wave, k0R = 1.5,
h = 0.35λ, εr = 2, µr = 1, and ξr = 0.3.
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Figure 8. Bistatic radar cross sections σθθ and σθφ of a chiral cylinder
illuminated by a plane EM wave, k0R = 1.5, h = 0.35λ, εr = 2, µr = 1,
and ξr = 0.3.

Figure 9. Gyroelectric sphere illuminated by a plane EM wave,
k0R = 0.5, εrxx = εryy = 5, εrzz = 7, εrxy = −εryx = j, µr = 1.
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Figure 10. Bistatic radar cross section of a gyroelectric sphere
illuminated by a plane EM wave, k0R = 0.5, εrxx = εryy = 5, εrzz = 7,
εrxy = −εryx = j, µr = 1.

Figure 11. A two-layered dispersive chiroferrite sphere illuminated
by a plane EM wave, for r2 = 7.2 cm, and r1 = 0.5r2 at the frequencies
of 0.4 GHz, 0.6 GHz, 1 GHz, and 1.2 GHz (α = 0.1, ω0 = 2π × 2 ×
109, ωm = 2π × 2 × 109, ε∞r = 2, εsr = 5, ωε = 2π × 2 × 109, ξε =
0.5, µ∞r = 1.1, µsr = 1.8, ωµ = 2π×2×109, ξµ = 0.5, τκ = 0.5

ωκ
, ωκ =

2π × 2× 109, ξκ = 0.3).

Corresponding tensors ¯̄ε = ε0

[
εrxx εrxy 0
εryx εryy 0
0 0 εrzz

]
, ¯̄µ =

[
µ0µr 0 0

0 µ0µr 0
0 0 µ0µr

]
, ¯̄ξ =

[ 0 0 0
0 0 0
0 0 0

]
and ¯̄ζ =

[ 0 0 0
0 0 0
0 0 0

]
are

assigned.
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The numerical results obtained from this method are presented
here. Total bistatic radar cross section σ is shown in Figure 10. The
RCS results are compared with Geng and Zhu’s work in [29] and [30]
using the MoM-CGM-FFT method. The same problem is also solved
in Yagli’s dissertation [17] using the TLM method. Good agreement
in RCS results is observed for these different methods.

This section presents the results of scattering from a two-layered
dispersive chiroferrite sphere shown in Figure 11. The sphere is of
radius R = r2 = 7.2 cm and contains two layers. The radius of the
inner sphere is r1. The outside layer and the inner sphere are made of a
dispersive chiral material and a dispersive ferrite material, respectively.
These two materials are described below.

When biased by a DC magnetic field B̄0 = âzB0, ferrite materials,
whose permittivity tensor is ¯̄ε = ε0

¯̄I, are characterized by their
permeability tensors ¯̄µ = µ0 ¯̄µr where

¯̄µr =

[
µ1 jµ2 0
−jµ2 µ1 0

0 0 µ3

]
. (52)

The elements in the permeability tensor are formulated as [17]

µ1 = 1 +
(ω0 + jωα)ωm

(ω0 + jωα)2 − ω2

µ2 =
ωωm

(ω0 + jωα)2 − ω2

µ3 = 1

(53)

where α is the ferrite damping factor, ω0 is the Larmor precession
frequency and ωm is the saturation magnetization frequency.

The Larmor precession frequency ω0 and the saturation
magnetization frequency ωm are determined by the DC magnetic field
bias by [17]

ω0 = γmH0

ωm = γmM0.
(54)

where γm is the gyromagnetic ratio, H0 the magnitude of the applied
DC magnetic field, and M0 the magnitude of saturated magnetization
vector. M̄0 is in the same direction of the applied magnetic field H̄0.

Once the Larmor precession frequency, saturation magnetization
frequency, and ferrite damping factor are given, the permeability tensor
¯̄µ can be evaluated at any frequency.

The constitutive equations for dispersive chiral media can be
written as

D̄(ω) = ε(ω)Ē(ω)− jκ(ω)
√

ε0µ0H̄(ω)
B̄(ω) = µ(ω)H̄(ω) + jκ(ω)

√
ε0µ0Ē(ω)

(55)
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Figure 12. Bistatic radar cross sections σθθ and σφθ of a two-layered
dispersive chiroferrite sphere illuminated by a plane EM wave, for r2 =
7.2 cm, and r1 = 0.5r2 at the frequencies of 0.4GHz, 0.6 GHz, 1 GHz,
and 1.2 GHz (α = 0.1, ω0 = 2π × 2× 109, ωm = 2π × 2× 109, ε∞r =
2, εsr = 5, ωε = 2π × 2× 109, ξε = 0.5, µ∞r = 1.1, µsr = 1.8, ωµ =
2π × 2× 109, ξµ = 0.5, τκ = 0.5

ωκ
, ωκ = 2π × 2× 109, ξκ = 0.3).

In most of the cases, the Lorentz model is used to characterize the
dispersive nature of permittivity and permeablity. The Condon model
is generally used to describe the dispersive nature of chirality [18]. The
Lorentz model is in the form

ε(ω) = ε∞ +
(εs − ε∞)ω2

ε

ω2
ε − ω2 + j2ωεξεω

µ(ω) = µ∞ +
(µs − µ∞)ω2

µ

ω2
µ − ω2 + j2ωµξµω

.

(56)
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The Condon model is in the form

κ(ω) =
τκω2

κω

ω2
κ − ω2 + j2ωκξκω

. (57)

We solved the two cases of r1 = 0.5r2, and r1 = 0.3r2. For comparison,
letting r1 = 0, the results of scattering from a homogeneous dispersive
chiral sphere of radius R = r2 = 7.2 cm are also presented here.

The sphere is illuminated by a plane electromagnetic wave
propagating in the z direction, which has its electric field in the x
direction, i.e., Ēinc = x̂Eince−jk0z and H̄ inc = ŷH ince−jk0z where
Einc = 1[V/m], as shown in Figure 11.

The numerical results are obtained at the frequencies of 0.4 GHz,
0.6GHz, 1 GHz, and 1.2 GHz. The corresponding values of k0R are
0.6032, 0.9048, 1.508, and 1.809, respectively. Figure 12 shows the
copolarized and cross-polarized bistatic radar cross sections σθθ of
φ = 0◦ and σφθ of φ = 0◦ when the inner sphere radius r1 = 0.5r2.

5. CONCLUDING REMARKS

This paper presents a general numerical solution based on the method
of moments (MoM) for various electromagnetic scattering problems.
The scatterer is assumed to be the most general case of a linear
and stationary material: an inhomogeneous bianisotropic medium of
an arbitrarily shaped three-dimensional geometry. It is the main
contribution of this paper that the applications of the MoM are
extended to solve scattering problems involving such a complicated
medium. The method is implemented in a MATLAB program.
A general-purpose electromagnetic scattering field solver that could
handle all kinds of inhomogeneities, dispersion, anisotropy, chirality,
and bianisotropy is offered to the electromagnetic community. To the
best of the authors’ knowledge, this is the first scattering field solver
that is able to cover such a wide range. The flexibility of the method
makes it very suitable to be applied to analyze electromagnetic field
interactions with all kinds of novel materials offered by the fast evolving
material technology.

The method applies the volume equivalence principle by which the
bounded charges and polarization currents in the body are modeled
as the sources of the scattered fields. Comparing with the surface
equivalence principle where only equivalent surface currents are placed
at the boundaries and inhomogeneities are difficult to handle, the
present method is not hampered by inhomogeneities and obtains a
more accurate field solution inside the body. The assumption of bound
charges and polarization currents distributed in the body makes it easy
to solve problems involving inhomogeneous scatterers.
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The problem is described by a set of mixed potential formulations,
where the total fields are separated into the incident fields and the
scattered fields, and the scattered fields are related to the electric and
magnetic potentials which are excited by electric and magnetic bound
charges and polarization currents. The potentials are further related
to the electric and magnetic polarizations and finally are formulated as
the functions of the total fields. Thus, the electric and magnetic field
integral equations are constructed.

The electric and magnetic field integral equations cannot be solved
analytically. The method of moments (MoM) technique is applied
to obtain a numerical solution of the integral equations. First, the
inhomogeneous scattering problem is modeled by dividing the scatterer
body into many small tetrahedral cells; within a cell the material is
assumed to be homogeneous and approximated by the properties at the
centroid of the tetrahedron. A set of face-based functions, RWG basis
functions, are introduced so that the unknown quantities in the integral
equations are expanded in terms of these basis functions. Galerkin’s
testing method is used to transform the original integral equations
to a MoM matrix equation. The MoM matrix equation can easily be
solved to determine the original unknown quantities. Thus, a numerical
solution of the original integral equations is obtained.

The proposed formulation is evaluated and verified through
examples of scattering by various scatterers illuminated by an
electromagnetic plane wave. Numerical results of these scattering
problems are presented and compared with results obtained using other
methods. A good agreement is observed. Thus, the method in this
paper is validated and its accuracy is confirmed.

After its verification, the proposed method has been applied to the
problem of a scattering by a two-layered dispersive chiroferrite sphere.
This problem is general enough and has not been solved in the past.
All the presented numerical cases prove that the method in this paper
is general enough to solve various problems which had to be solved by
different methods previously.

As mentioned earlier, the MoM technique that uses the volume
equivalence principle has many advantages over the surface approach,
especially because it may be applied with better accuracy to
inhomogeneous scatterers. However, it may suffer from a rapid growth
of computational complexity with increased mesh resolution in the case
of electrically large objects. The following improvements can be done
in the future to increase the mesh size limit and reduce the simulation
time. First, rewriting the algorithm in a compiled computer language
such as C and Fortran which are much faster than the interpreted
language MATLAB will significantly reduce the computation time.
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Secondly, carefully controlling the meshing process will further reduce
the mesh complexity. If the mesh is dense at the locations where the
fields vary rapidly over the distance, and less dense at the locations
where field variation is more steady, the same level of accuracy can
be achieved with less complexity. In the current code, the meshing
process is a knowledge based process and the mesh is refined at the
boundaries where the field variation is predicted to be significant. It
would be helpful if the meshing process is realized automatically so
that the program is able to handle more complicated structures. It
would be even better if an adaptive meshing method can be adopted.
Using such a method, a problem is solved initially with a coarse mesh,
and the refinements are added based on the previous solution and are
concentrated in the locations where fields change rapidly and where
refinements are necessary. Other acceleration techniques such as those
based on the fast Fourier transform [32] can also be applied in further
research with the objective of increasing the efficiency of the computer
program through a reduction of memory and time requirements.

Once the cells of a mesh are numbered further reduction of the
number of the unknowns in the MoM matrix equation can be done
by experimenting with another set of basis functions. The number
of the face-based RWG functions used in our formulation is equal to
the number of the faces in the mesh. We also know that the number
of faces in a volume mesh is considerably larger than the number of
the edges. If the expansion functions are associated with the edges
of tetrahedron of the mesh instead of their faces, the number of the
basis functions introduced by the same mesh is reduced, and therefore,
the number of the unknowns in the MoM matrix equation goes down.
Such edge-based expansion functions are often referred to as three-
dimensional solenoidal expansion functions. They were first proposed
by Mendes and Carvalho [33] to reduce the number of basis functions.
The edge-based expansion functions have a better convergence rate and
higher numerical stability according to Kulkarni et al. [34]. Therefore,
the application of the three-dimensional solenoidal functions proposed
by [33] in this research area should be considered as a part of the future
research effort.

The authors of this work encourage the electromagnetic
community to investigate the scattering field solver, to take advantage
of its flexibility and to use it as a tool to study scattering problems
involving various complicated materials. The results presented in this
paper can, by serving as data with which to compare, aid future
research in scattering field calculations.
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